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We consider the spin-orbital model for a magnetic system with singly occupied but triply degenerate t2g

orbitals coupled into a planar, triangular lattice, as would be exemplified by NaTiO2. We investigate the ground
states of the model for interactions which interpolate between the limits of pure superexchange and purely
direct-exchange interactions. By considering ordered and dimerized states at the mean-field level, and by
interpreting the results from exact diagonalization calculations on selected finite systems, we demonstrate that
orbital interactions are always frustrated and that orbital correlations are dictated by the spin state, manifesting
an intrinsic entanglement of these degrees of freedom. In the absence of Hund coupling, the ground state
changes from a highly resonating, dimer-based, symmetry-restored spin and orbital-liquid phase to one based
on completely static, spin-singlet valence bonds. The generic properties of frustration and entanglement survive
even when spins and orbitals are nominally decoupled in the ferromagnetic phases stabilized by a strong Hund
coupling. By considering the same model on other lattices, we discuss the extent to which frustration is
attributable separately to geometry and to interaction effects.
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I. INTRODUCTION

Frustration in magnetic systems may be of geometrical
origin, or may arise due to competing exchange interactions,
or indeed both.1 For quantum spins, frustration acts to en-
hance the effects of quantum fluctuations, leading to a num-
ber of different types of magnetically disordered state,
among which some of the more familiar are static and reso-
nating valence-bond �VB� phases. A further form of solution
in systems with frustrated spin interactions is the emergence
of novel ordered states from a highly degenerate manifold of
disordered states, and the mechanism for their stabilization
has become known simply as “order by disorder.”1,2 Many
materials are now known whose physical properties could be
understood only by employing microscopic models with
frustrated spin interactions in which some of these theoreti-
cal concepts operate.

A different and still richer situation occurs in the class of
transition-metal oxides or fluorides with partly filled 3d or-
bitals and near degeneracy of active orbital degrees of free-
dom. In undoped systems, large Coulomb interactions on the
transition-metal ions localize the electrons and the low-
energy physics is that of a Mott �or charge-transfer3� insula-
tor. Their magnetic properties are described by superex-
change spin-orbital models, derived directly from the real
electronic structure and containing linearly independent but
strongly coupled spin and orbital operators.4 Such models
emerge from the charge excitations which involve various
multiplet states,5,6 in which ferromagnetic �FM� and antifer-
romagnetic �AF� interactions, as well the tendencies toward
ferro-orbital �FO� and alternating orbital �AO� order, com-
pete with each other. This leads to a profound intrinsic frus-

tration of spin-orbital exchange interactions, which occurs
even in case of only nearest-neighbor interactions for lattices
with unfrustrated geometry, such as the square and cubic
lattices.7 The underlying physics is formulated in the
Goodenough-Kanamori rules,8 which imply that the two
types of order are complementary in typical situations: AO
order favors a FM state while FO order coexists with AF spin
order. Only recently have exceptions to these rules been
noticed,9 and the search for such exceptions, and thus for
more complex types of spin-orbital order or disorder, has
become the topic of much active research.

A case study for frustration in coupled spin-orbital sys-
tems is provided by the one-dimensional �1D� SU�4�
model.10 One expects a priori no frustration in one dimen-
sion and with only nearest-neighbor interactions. However,
spin and orbital interactions, the latter formulated in terms of
pseudospin operators, appear on a completely symmetrical
footing for every bond, and favor, respectively, AF and AO
ordering tendencies, which compete with each other. In fact,
a low-energy but magnetically disordered spin state also
frustrates the analogous pseudospin-disordered state and
conversely. This competition results in strong, combined
spin-orbital quantum fluctuations which make it impossible
to separate the two subsystems, and it is necessary to treat
explicitly entangled spin-pseudospin states.9,11 While in one
sense this may be considered as a textbook example of frus-
tration and entanglement, the symmetry of the entangled sec-
tors is so high that joint spin-pseudospin operators are as
fundamental as the separate spin and pseudospin operators,
forming parts of a larger group of elementary �and disen-
tangled� generators. The fact that the 1D SU�4� model is
exactly solvable also results in fundamental symmetries be-
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tween the intersite correlation functions for the spin and or-
bital �and spin-orbital� sectors.12 We return below to a more
detailed discussion of entanglement and its consequences.
Although indicative of the rich underlying physics �indeed,
unconventional behavior has been identified for the SU�4�
Hamiltonian on the triangular lattice10,13� the implications of
this model are rather limited because it does not correspond
to the structure of superexchange interactions in real corre-
lated materials.

Realistic superexchange models for perovskite transition-
metal oxides with orbital degrees of freedom have been
known for more than three decades,5,6 but the intrinsic frus-
trating effects of spin-orbital interactions have been investi-
gated only in recent years.7,14 A primary reason for this delay
was the complexity of the models and the related quantum
phenomena, which require advanced theoretical methods be-
yond a straightforward mean-field theory. The structure of
spin-orbital superexchange involves interactions between

SU�2�-symmetric spins �S� i ,S� j� on two nearest-neighbor
transition-metal ions �i , j�, each coupled to orbital operators

�T� i ,T� j� which obey only much lower symmetry �at most cu-
bic for a cubic lattice�, and its general form is4

HJ = J �
�ij	
�

�Ĵij
����S� i · S� j� + K̂ij

���� . �1.1�

The energy scale J is determined �Sec. II� by the interaction
terms and effective hopping matrix elements between pairs
of directional eg orbitals ��dd�� element� or t2g orbitals

��dd�� element�. The orbital operators Ĵij
��� and K̂ij

��� specify
the orbitals on each bond �ij	 
�, which participate in
di

ndj
n�di

n+1dj
n−1 virtual excitations, and thus have the sym-

metry of the lattice. The form of the orbital operators de-
pends on the valence n, on the type �eg or t2g� of the orbitals
and, crucially, on the bond direction in real space.15 It is clear
from Eq. �1.1� that individual terms in the Hamiltonian HJ
can be minimized for particularly chosen spin and orbital
configurations,4 but in general the structure of the orbital
operators ensures a competition between the different bonds.

This directional nature is the microscopic origin of the
intrinsic frustration mentioned above, which is present even
in the absence of geometrical frustration. Both spin and or-
bital interactions are frustrated, making long-range order
more difficult to realize in either sector and enhancing the
effects of quantum fluctuations. Quite generally, because in-
sufficient �potential� energy is available from spin or orbital
order, the system is driven to gain �kinetic� energy from reso-
nance processes, promoting phases with short-range dynami-
cal correlations and leading naturally to spin and/or orbital
disorder. Disordering tendencies are particularly strong in
highly symmetric systems, which for crystalline materials
means cubic and hexagonal structures. Among possible mag-
netically disordered phases for spin systems, tendencies to-
ward dimer formation are common in the regime of predomi-
nantly AF spin interactions, and new phases with valence-
bond �VB� correlations occur. This type of physics was
discussed first for eg orbitals on the cubic lattice7 and, in the
context of BaVS3, for one version of the problem of t2g or-
bitals on a triangular lattice.16 The same generic behavior has

since been found for t2g orbitals on the cubic lattice,17

eg-orbital systems on the triangular lattice,18,19 and for t2g
orbitals in the pyrochlore geometry.20,21 By analogy with
spin liquids, the orbital-liquid phase1 has been introduced for
systems with both eg �Refs. 7 and 22� and t2g �Refs. 14 and
23� orbital degrees of freedom. The orbital liquid is a phase
in which strong orbital fluctuations restore the symmetry of
the orbital sector, in the sense that the instantaneous orbital
state of any site is pure, but the time average is a uniform
occupation of all available orbital states. We note that in the
discussion of orbital liquids in t2g systems,14,23 it was argued
that the spin sector would be ordered. To date little is known
concerning the behavior of orbital correlations in an orbital
liquid, the possible instabilities of the orbital liquid toward
dimerized or VB phases, or its interplay with lattice degrees
of freedom.

One possible mechanism for the formation of an orbital-
liquid state is the positional resonance of VBs. There has
been considerable recent discussion of spin-orbital models in
the continuing search for a realistic system realizing such a
resonating VB �RVB� state,19 including in a number of the
references cited in the previous paragraph. While the RVB
state was first proposed for the S= 1

2 Heisenberg model on a
triangular lattice,24 extensive analysis of spin-only models
has not yet revealed a convincing candidate system, although
the nearest-neighbor dimer basis has been shown to deliver a
very good description of the low-energy sector for the S= 1

2
Heisenberg model on a kagome lattice.25 To date, the only
rigorous proof for RVB states has been obtained in rather
idealized quantum dimer models �QDMs�,26 most notably on
the triangular lattice.27 The insight gained from this type of
study can, however, be used19 to formulate some qualitative
criteria for the emergence of a RVB ground state. These
combine energetic and topological requirements, both of
which are essential: the energetics of the system must estab-
lish a proclivity for dimer formation, a high quasidegeneracy
of basis states in the candidate ground manifold, and addi-
tional energy gains from dimer resonance; exact degeneracy
between topological sectors �determined by a nonlocal order
parameter related to winding of wave functions around the
system� is a prerequisite to remove the competing possibility
of a “solid” phase with dimer, plaquette, or other “crystal-
line” order.28

We comment here that the “problem” of frustration, and
the resulting highly degenerate manifolds of states which
may promote resonance phenomena, is often solved by inter-
actions with the lattice. Lattice deformations act to lift de-
generacies and to stabilize particular patterns of spin and
orbital order, the most familiar situation being that in
colossal-magnetoresistance manganites.29 The same physics
is also dominant in a number of spinels, where electron-
lattice interactions are responsible both for the Verwey tran-
sition in magnetite30 and for t2g orbital order below it, as well
as for inducing the Peierls state in CuIr2S4 and MgTi2O4.31

Similar phenomena are also expected31 to play a role in
NaTiO2. Here, however, we will not introduce a coupling to
phonon degrees of freedom, and focus only on purely elec-
tronic interactions whose frustration is not quenched by the
lattice.

In real materials, many other perturbations also exist to
which systems with highly degenerate manifolds of states are
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inordinately sensitive. One is the presence of Dzyaloshinskii-
Moriya �DM� interactions,32 which act to stabilize a stag-
gered magnetic moment, breaking the degeneracy of the
ground-state manifold in any such system.33 DM interactions
are of particular concern in the context of the recently dis-
covered S= 1

2 kagome compound ZnCu3�OH�6Cl2 �discussed
at greater length in Sec. VII�.34 However, in the perovskite
geometry we consider �below�, the bonds of the triangular
lattice are centrosymmetric, and thus a DM interaction is
excluded in the absence of lattice distortions, whose direct
effects are stronger �previous paragraph�. Both magnetic and
nonmagnetic impurities are also known to cause very strong
and by no means local effects on the magnetic states of frus-
trated systems,35 a very broad topic into which we do not
enter in the context of the current model and analysis.

The spin-orbital interactions on a triangular lattice are
particularly intriguing. This lattice, shown in Fig. 1, occurs
for edge-sharing MO6 octahedra in structures such as
NaNiO2 and LiNiO2, where the consecutive �111	 planes of
Ni3+ ions are well separated. These two eg-electron systems
behave quite differently: while NaNiO2 undergoes a coopera-
tive Jahn-Teller structural transition followed by a magnetic
transition at low temperatures �TN=20 K�, both transitions
are absent in LiNiO2.36 Possible reasons for this remarkable
contrast were discussed in Ref. 37, where the authors noted
in particular that realistic spin-orbital superexchange neither
has an SU�2� � SU�2� structure18 nor can it ever be reduced
only to the consideration of FM spin terms.38 These studies

showed in addition that LiNiO2 is not a spin-orbital liquid
and that the reasons for the observed disordered state are
subtle, as spins and orbitals are thought likely to order in a
strictly two-dimensional �2D� spin-orbital model.37

The possibilities offered for exotic phases in this type of
model and geometry motivate the investigation of a realistic
spin-orbital model with active t2g orbitals, focusing first on
3d1 electronic configurations. The threefold degeneracy of
the orbitals is maintained, although, as noted above, this con-
dition may be hard to maintain in real materials at low tem-
peratures. A material which should exemplify this system is
NaTiO2 �Fig. 1�, which is composed of Ti3+ ions in t2g

1 con-
figuration, but has to date had rather limited experimental39,40

and theoretical41 attention. Considerably more familiar is the
set of triangular cobaltates best known for superconductivity
in NaxCoO2: here the Co4+ ions have t2g

5 configuration and
are expected to be analogous to the d1 case by particle-hole
symmetry. The effects of doping have recently been removed
by the synthesis of the insulating end-member CoO2.42 An-
other system for which the same spin-orbital model could be
applied is Sr2VO4, where the V4+ ions occupy the sites of a
square lattice.43

The model with hopping processes of pure superexchange
type was considered in the context of doped cobaltates by
Koshibae and Maekawa.44 These authors noted that, like the
cubic system, two t2g orbitals are active for each bond direc-
tion in the triangular lattice, but the superexchange interac-
tions are very different from the cubic case because the ef-
fective hopping interchanges the active orbitals. Here we
focus only on insulating systems, whose entire low-energy
physics is described by a spin-orbital model. In addition to
superexchange processes mediated by the oxygen ions, on
the triangular lattice it is possible to have direct-exchange
interactions, which result from charge excitations due to di-
rect d-d hopping between those t2g orbitals which do not
participate in the superexchange. The ratio of these two types
of interaction ��, defined in Sec. II� is a key parameter of the
model. Further, in transition-metal ions4 the coefficients of
the different microscopic processes depend on the Hund ex-
change JH arising from the multiplet structure of the excited
intermediate d2 state,45 and we introduce

� =
JH

U
�1.2�

as the second parameter of the model. The aim of this inves-
tigation is to establish the general properties of the phase
diagram in the �� ,�� plane.

We conclude our introductory remarks by returning to the
question of entanglement. In the analysis to follow we will
show that the presence of conflicting ordering tendencies
driven by different components of the frustrated intersite in-
teractions can be related to the entanglement of spin and
orbital interactions. By “entanglement” we mean that the
correlations in the ground state involve simultaneous fluctua-
tions of the spin and orbital components of the wave function
which cannot be factorized. We will introduce an intersite
spin-orbital correlation function to identify and quantify this

Na-ion

O-ion

Ti-ion

YZ

XY

ZX

(b)

(a)

FIG. 1. �Color online� Structure of the transition-metal oxide
with edge-sharing octahedra realized in the isostructural materials
NaTiO2, discussed here, NaNiO2, and LiNiO2: �a� fragment of crys-
tal structure, with Ti and Na ions shown, respectively, by black and
green �gray� circles separated by O ions �open circles�; �b� titanium
�111	 plane with adjacent oxygen layers, showing each Ti3+ ion
coordinated by six oxygen atoms �open circles�. The directions of
the Ti-Ti bonds are labeled as XY, YZ, and ZX, corresponding to the
plane spanned by the connecting Ti-O bonds. This figure is repro-
duced from Ref. 37, where it served to explain the structure of
LiNiO2.
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type of entanglement in different regimes of the phase dia-
gram. It has been shown9 that such spin-orbital entanglement
is present in cubic titanates or vanadates for small values of
the Hund exchange �. Here we will find entanglement to be
a generic feature of the model for all exchange interactions,
even in the absence of dimer resonance, and that only the
FM regime at sufficiently high �, which is fully factorizable,
provides a counterpoint where the entanglement vanishes.

The paper is organized as follows. In Sec. II we derive the
spin-orbital model for magnetic ions with the d1 electronic
configuration �Ti3+ or V4+� on a triangular lattice. The deri-
vation proceeds from the degenerate Hubbard model, and the
resulting Hamiltonian contains both superexchange and
direct-exchange interactions. We begin our analysis of the
model, which covers the full range of physical parameters, in
Sec. III by considering patterns of long-ranged spin and or-
bital order representative of all competitive possibilities.
These states compete with magnetically or orbitally disor-
dered phases dominated by VB correlations on the bonds,
which are investigated in Sec. IV. The analysis suggests
strongly that all long-range order is indeed destabilized by
quantum fluctuations, leading over much of the phase dia-
gram to liquid phases based on fluctuating dimers, with spin
correlations of only the shortest range. In Sec. V we present
the results of exact diagonalization �ED� calculations per-
formed for small clusters with three, four, and six bonds,
which reinforce these conclusions and provide detailed infor-
mation about the local physical processes leading to the
dominance of resonating dimer phases. In each of Secs.
III–V, we conclude with a short summary of the primary
results, and the reader who is more interested in an overview,
rather than in detailed energetic comparisons and actual cor-
relation functions for the different phases, may wish to read
only these. Some insight into the competition and collabora-
tion between frustration effects of different origin can be
obtained by varying the geometry of the system, and Sec. VI
discusses the properties of the model on related lattices. A
discussion and concluding summary are presented in Sec.
VII.

II. SPIN-ORBITAL MODEL

A. Hubbard model for t2g electrons

We consider the spin-orbital model on the triangular lat-
tice which follows from the degenerate Hubbard-type model
for t2g electrons. It contains the electron kinetic energy and
electronic interactions for transition-metal ions arranged on
the �111	 planes of a compound with local cubic symmetry
and with the d1 ionic configuration, and as such is applicable
to Ti3+ or V4+ �Fig. 1�a��. The kinetic energy is given by

Ht = − �
�ij	
�,��,�

t��
����di��

† dj�� + dj��
† di��� , �2.1�

where di��
† are creation operators for an electron with spin

�= ↑ ,↓ and orbital “color” � at site i and the sum is made
over all the bonds �ij	 
� spanning the three directions,

�=a ,b ,c, of the triangular lattice. This notation is adopted
from the situation encountered in a cubic array of magnetic
ions, where only two of the three t2g orbitals are active on
any one bond �ij	, and contribute t��

��� to the kinetic energy,
while the third lies in the plane perpendicular to the � axis
and thus hopping processes involving the 2p� oxygen orbit-
als are forbidden by symmetry.46,47 We introduce the labels
a�yz, b�xz, and c�xy also for the three orbital colors, and
in the figures to follow their respective spectral colors will be
red, green, and blue.

For the triangular lattice formed by the ions on the �111	
planes of transition-metal oxides �Fig. 1� it is also the case
that only two t2g orbitals participate in �superexchange� hop-
ping processes via the oxygen sites. However, unlike the
cubic lattice, where the orbital color is conserved, here any
one active orbital color is exchanged for the other one �Fig.
2�a��. Using the same convention, that each direction in the
triangular lattice is labeled by its inactive orbital color48 �
=a ,b ,c, the hopping elements for a bond oriented, for ex-
ample, along the c axis in Eq. �2.1� are tab

�c�= tba
�c�= t and taa

�c�

= tbb
�c�=0. In addition, and also in contrast to the cubic system,

for the triangular geometry a direct hopping from one c or-
bital to the other, i.e., without involving the oxygen orbitals,
is also permitted on this bond �Fig. 2�, and this element is
denoted by t�= tcc

�c�. We will also refer to these hopping pro-
cesses as off-diagonal and diagonal. We stress that while the
lattice structure of magnetic ions is triangular, the system
under consideration retains local cubic symmetry of the
metal-oxygen octahedra, which is crucial to ensure that the

c2

3

2

3

11

(bc) (ca)

(ab)

ba

(b)

(a)

(c)

FIG. 2. �Color online� �a� Schematic representation of the hop-
ping processes in Eq. �2.1� which contribute to magnetic interac-
tions on a representative bond �ij	 along the c axis in the triangular
lattice. The t2g orbitals are represented by different colors �grayscale
intensities�. Superexchange processes involve O 2pz orbitals �vio-
let� and couple pairs of a and b orbitals �red, green� with effective
hopping elements t, interchanging their orbital color. Direct ex-
change couples c orbitals �blue� with hopping strength t�. �b� Pairs
of t2g orbitals active in superexchange and �c� single orbitals active
in direct exchange; horizontal bonds correspond to the situation
depicted in panel �a�.
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degeneracy of the three t2g orbitals is preserved.
The electron-electron interactions are described by the on-

site terms49

Hint = U�
i�

ni�↑ni�↓ + �U −
5

2
JH �

i,�	�,���

ni��ni���

− 2JH �
i,�	�

S� i� · S� i� + JH �
i,���

di�↑
† di�↓

† di�↓di�↑,

�2.2�

where U and JH represent, respectively, the intraorbital Cou-
lomb and on-site Hund exchange interactions. Each pair of
orbitals �� ,�� is included only once in the interaction terms.
Hamiltonian �2.2� describes rigorously the multiplet structure
of d2 ions within the t2g subspace and is rotationally invariant
in the orbital space.49

When the Coulomb interaction is large compared with the
hopping elements �U
 t , t��, the system is a Mott insulator
with one d electron per site in the t2g orbitals, whence the
local constraint in the strongly correlated regime is

nia + nib + nic = 1, �2.3�

where ni�=ni�↑+ni�↓. The operators act in the restricted
space ni�=0,1. The low-energy Hamiltonian may be ob-
tained by second-order perturbation theory and consists of a
superposition of terms which follow from virtual di

1dj
1�di

2dj
0

excitations. Because each hopping process may be of either
off-diagonal �t� �Fig. 2�b�� or diagonal �t�� type �Fig. 2�c��,
the Hamiltonian consists of several contributions which are
proportional to three coupling constants,

Js =
4t2

U
, Jd =

4t�2

U
, Jm =

4tt�

U
. �2.4�

These represent in turn the superexchange term, the direct-
exchange term, and mixed interactions which arise from one
diagonal and one off-diagonal-hopping process.

We choose to parametrize the Hamiltonian by the single
variable

� = sin2 � , �2.5�

with

tan � =
t�

t
, �2.6�

which gives Js=J cos2 �, Jm=J sin � cos �, and Jd=J sin2 �;
J is the energy unit, which specifies, respectively, the super-
exchange �J=Js� and direct-exchange �J=Jd� constants in the
two limits �=0 and �=1. The Hamiltonian

H = J��1 − ��Hs + ��1 − ���Hm + �Hd� �2.7�

consists of three terms which follow from the processes de-
scribed by the exchange elements in Eqs. �2.4�, each of
which contains contributions from both high- and low-spin
excitations.

B. Superexchange

Superexchange contributions to H can be expressed in the
form

Hs =
1

2 �
�ij	
�

�r1�S� i · S� j +
3

4
�Aij

��� +
1

2
�ni� + nj�� − 1�

+ r2�S� i · S� j −
1

4
�Aij

��� −
1

2
�ni� + nj�� + 1�

−
2

3
�r2 − r3��S� i · S� j −

1

4
Bij

���� , �2.8�

where one recognizes a structure similar to that for superex-
change in cubic vanadates,4,14 with separation into a spin

projection operator on the triplet state, �S� i ·S� j +
3
4 �, and an

operator �S� i ·S� j −
1
4 � which is finite only for low-spin excita-

tions. These operators are accompanied by coefficients
�r1 ,r2 ,r3� which depend on the Hund exchange parameter
�1.2� and are given from the multiplet structure of d2 ions45

by

r1 =
1

1 − 3�
, r2 =

1

1 − �
, r3 =

1

1 + 2�
. �2.9�

The Coulomb and Hund exchange elements deduced from
the spectroscopic data of Zaanen and Sawatzky50 are U
=4.35 eV and JH=0.59 eV, giving a realistic value of �
�0.136 for Ti2+ ions. For V2+ one finds50 U=4.98 eV and
JH=0.64 eV, whence ��0.13, and the values for V3+ ions
are expected to be very similar. Finally, for Co3+ ions,51 U
=6.4 eV and JH=0.84 eV, giving again ��0.13. The value
�=0.13 therefore appears to be quite representative for
transition-metal oxides with partly filled t2g orbitals, whereas
somewhat larger values have been found for systems with
active eg orbitals due to a stronger Hund exchange.4

The orbital operators Aij and Bij in Eq. �2.8� depend on
the bond direction � and involve two active orbital colors,

Aij
��� = �Ti�

+ Tj�
+ + Ti�

− Tj�
− � − 2Ti�

z Tj�
z +

1

2
ni

���nj
���, �2.10�

Bij
��� = �Ti�

+ Tj�
− + Ti�

− Tj�
+ � − 2Ti�

z Tj�
z +

1

2
ni

���nj
���. �2.11�

For illustration, in the case �=c ��ij	 
c�, the orbitals a and b
at site i are interchanged �off-diagonal hopping� at site j, and
the electron number operator is ni

���=nia+nib. The quantity
ni� in Eq. �2.8� is the number operator for electrons on the
site in orbitals inactive for hopping on bond �, ni�=1−ni

���,
or nic in this example.

For a single bond, the orbital operators in Eq. �2.10� may
be written in a very suggestive form by performing a local
transformation in which the active orbitals are exchanged on
one bond site, specifically �a	→ �b	 and �b	→ �a	 on bond
�=c.44 Then
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Aij
��� = 2�T� i� · T� j� +

1

4
ni

���nj
��� , �2.12�

Bij
��� = 2�T� i� � T� j� +

1

4
ni

���nj
��� , �2.13�

where the scalar product in Aij is the conventional expression
for pseudospin –1 /2 variables, and the cross product in Bij is
defined as

T� i� � T� j� =
1

2
�Ti�

+ Tj�
+ + Ti�

− Tj�
− � + Ti�

z Tj�
z . �2.14�

Equations �2.8� and �2.12� make it clear that for a single
superexchange bond, the minimal energy is obtained either
by forming an orbital singlet, in which case the optimal spin
state is a triplet, or by forming a spin singlet, in which case
the preferred orbital state is a triplet; we refer to these bond
wave functions as �os/st� and �ss/ot�, respectively. The two
states are degenerate for �=0, while for finite Hund ex-
change,

E�os/st� = − Jr1, �2.15�

E�ss/ot� = −
1

3
J�2r2 + r3� , �2.16�

and the �os/st� state is favored. This propensity for singlet
formation in the �=0 limit will drive much of the physics to
be analyzed in what follows.

Because of the off-diagonal nature of the hopping term, in
the original electronic basis �before the local transformation�
the orbital singlet is the state

�os	 =
1
�2

��aa	 − �bb	� , �2.17�

while the orbital triplet states are

�ot+	 = �ab	 , �2.18�

�ot0	 =
1
�2

��aa	 + �bb	� , �2.19�

�ot−	 = �ba	 . �2.20�

The locally transformed basis then gives a clear analogy
which can be used for single bonds and dimer phases in
combination with all of the understanding gained for the
Heisenberg model. However, we stress here that the local
transformation fails for systems with more than one bond in
the absence of static-dimer formation. This arises due to frus-
tration and can be shown explicitly in numerical calculations,
but we will not enter into this point in more detail here.
However, we take the liberty of retaining the notation of the
local transformation particularly in Sec. IV when considering
dimers. Because the transformation interchanges the defini-
tions of FO and AO configurations, we will state clearly in
each section the basis in which the notation is chosen.

C. Direct exchange

The direct-exchange part is obtained by considering vir-
tual excitations of active � orbitals on a bond �ij	 
�, which
yield

Hd =
1

4 �
�ij	
�

��− r1�S� i · S� j +
3

4
 + r2�S� i · S� j −

1

4
�

� �ni��1 − nj�� + �1 − ni��nj��

+
1

3
�2r2 + r3��S� i · S� j −

1

4
4ni�nj�� . �2.21�

Here there are no orbital operators, but only number opera-
tors which select electrons of color � on bonds oriented
along the � axis. When only one active orbital is occupied
�ni��1−nj���, this electron can gain energy − 1

4J from virtual
hopping at �=0, the number which has only the weak de-
pendence on the bond spin state at ��0. When both active
orbitals are occupied �ni�nj��, placing the two electrons in a
spin singlet yields the far lower bond energy −J, and thus
again one may expect much of the discussion to follow to
center on dimer-based states of the extended system. Again
the triplet d2 spin excitation corresponds to the lowest en-
ergy, �U−3JH�, and only the lower two excitations involve
spin singlets which could minimize the bond energy. The
structure of these terms is the same as in the 1D eg spin-
orbital model52 or the case of the spinel MgTi2O4.20 A sim-
plified model for the triangular-lattice model in this limit,
using a lowest-order expansion in � for the spin but not for
orbital interactions, was introduced in Ref. 53.

D. Mixed exchange

Finally, the two different types of hopping channel may
also contribute to two-step, virtual di

1dj
1�di

2dj
0 excitations

with one off-diagonal �t� and one diagonal �t�� process. The
occupied orbitals are changed at both sites �Fig. 2�, and as
for the superexchange term the resulting effective interaction
may be expressed in terms of orbital fluctuation operators. To
avoid a more general but complicated notation, we write this
term only for c-axis bonds,

Hm
�c� = −

1

4 �
�ij	
c

�r1�S� i · S� j +
3

4
 − r2�S� i · S� j −

1

4
�

� �Tia
+ Tjb

+ + Tib
− Tja

− + Tib
+ Tja

+ + Tia
− Tjb

− � , �2.22�

where the orbital operators are

Tia
+ = bi

†ci, Tib
+ = ci

†ai,

Tia
− = ci

†bi, Tib
− = ai

†ci. �2.23�

These definitions are selected to correspond to the
↑-pseudospin components of both operators being �bi	 for Tia

z

and �ci	 for Tib
z . The form of the Hm

�a� and Hm
�b� terms is ob-

tained from Eq. �2.22� by a cyclic permutation of the orbital
indices. By inspection, this type of term is finite only for
bonds whose sites are occupied by linear superpositions of
different orbital colors and creates no strong preference for
the spin configuration at small �.
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E. Limit of vanishing Hund exchange

In Secs. III–VII we will give extensive consideration to the model of Eq. �2.7� at �=0. In this special case, the multiplet
structure collapses �spin singlet and triplet excitations are degenerate�, one finds a single charge excitation of energy U, and the
Hamiltonian reduces to the form

H�� = 0� = J �
�ij	
�

��1 − ���2�S� i · S� j +
1

4
�T� i� · T� j� +

1

4
ni

���nj
��… +

1

2
�ni� + nj�� − 1�

+ ���S� i · S� j −
1

4
ni�nj� −

1

4
„ni��1 − nj�� + �1 − ni��nj�…� −

1

4
���1 − ��

��Ti�̄
+ Tj�̃

+ + Ti�̃
− Tj�̄

− + Ti�̃
+ Tj�̄

+ + Ti�̄
− Tj�̃

− �� , �2.24�

which depends only on the ratio of superexchange to direct
exchange �0���1�. The first line of Eq. �2.24� makes ex-
plicit the fact that the spin and orbital sectors are completely
equivalent and symmetrical at �=0, at least at the level of a
single bond. However, we will show that this equivalence is
broken when more bonds are considered, and no higher sym-
metry emerges because of the color changes involved for
different bond directions, which change the SU�2� orbital
subsector. The second line of Eq. �2.24� emphasizes the im-
portance of bond occupation and singlet formation at �=1
�Sec. II C�.

In the third line of Eq. �2.24�, the labels �̄� �̃ refer to the
two mixed orbital operators on each bond �Eq. �2.23��. Or-
bital fluctuations are the only processes contributing to the
mixed terms in this limit, where the spin state of the bond
has no effect. We draw the attention of the reader to the fact
that for the parameter choice �=0.5, an electron of any color
at any site has the same matrix element to hop in any direc-
tion. However, because of the different color changes in-
volved in these processes, again the spin-orbital Hamiltonian
does not exhibit a higher symmetry at this point, a result
reflected in the different operator structures of superex-
change and direct-exchange components.

F. Calculational techniques

The Hamiltonian given by Eq. �2.7� poses a complex
many-body problem. As explained above, the parameters of
this problem are the ratio of the direct and superexchange
interactions, � �Eq. �2.5��, and the strength of the Hund ex-
change interaction, � �Eq. �1.2��. We will investigate its pos-
sible ordered and disordered states both by variational meth-
ods and by full ED.

The first necessary step in any analysis of such an inter-
acting system is to establish the energies of different �mag-
netically and orbitally� ordered states. The high connectivity
of the triangular-lattice system suggests that ordered states
will dominate, and claims of more exotic ground states are
justifiable only when these are shown to be uncompetitive.
We investigate this question in Sec. III by a mean-field treat-
ment of the coupled spin-orbital system in which we con-
sider the simplest ordered magnetic states with small unit

cells augmented by a number of more complex spin configu-
rations in specific cases. The most obvious magnetic states
are spin aligned �FM�, the three sublattice, 120° ordered state
of the triangular lattice �AF�, and a state with two fully AF
�180°� bond directions and one FM bond direction �AFF�.
We will show in detail, by considering certain chosen values
of �, that the magnetic interactions are dictated by the orbital
configuration in every case, resulting in strong directional
anisotropies and active or inactive bond directions which act
to break the lattice symmetry at a fundamental level. For the
same � values, we will discuss briefly the influence of the
Hund exchange parameter in driving a transition to FM spin
order with increasing �.

The optimal energies of states with long-ranged order are
compared in Sec. IV with those for static VB wave functions.
A preference for such �spin- or orbital-�singlet dimer cover-
ings is clearly visible in the single-bond energies noted
above both for �=0 and �=1. The dimer configurations we
investigate are selected variationally, with the choices moti-
vated not by the energy contributions due to the bonds occu-
pied by spin or orbital singlets, which are constant, but due
to the interdimer bonds which contribute with finite orbital or
spin interactions even when the complementary �spin or or-
bital� sector is fully disordered. Again these variational ener-
gies are computed for a number of chosen values of �, while
a systematic study of the effect of � on such VB states is
deferred to Sec. V.

In Sec. V we perform full ED calculations for systems up
to and including four sites; while larger systems can be con-
sidered despite the rapidly increasing size of the Hilbert
space, we will show that even these small clusters provide
valuable insight into the nature of the ground state and the
excitation spectrum. Specifically, the ED calculations pro-
vide very strong support for the dimer ansatz of Sec. IV, and
thus a systematic means of calculating the effects of reso-
nance processes involving both spin- and orbital-singlet en-
tities. Results are presented for the full range of values of
both � and �. We have used full ED rather than the Lanczos
algorithm both because the former yields directly the degen-
eracy of the ground state, which is found to be essential in
understanding the orbital correlations, and because we will
extract additional information from our knowledge of the full
spectrum.
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III. LONG-RANGE-ORDERED STATES

In this section we study possible ordered or partially or-
dered states for the Hamiltonian �2.7�. The calculations,
which are restricted to the mean-field level, will be per-
formed for static orbital and spin configurations, with the
virtual processes responsible for �super�exchange as the only
fluctuations. In the language of the discussion in Sec. I, fully
ordered states gain only potential energy at the cost of sac-
rificing the kinetic �resonance� energy from fluctuation pro-
cesses, which, as we will show in Secs. IV and V, is of
crucial importance here.

A. Possible orbital configurations

The results to follow will be obtained by first fixing the
orbital configuration, either on every site or on particular
bonds, then computing the spin interaction, and optimizing
the spin state accordingly. While this is equivalent to the
converse, the procedure is more transparent and offers more
insight into the candidate phases. We limit the number of
states to ordered phases with small unit cells, and the orbital
states to be considered are enumerated in this section. For
clarity we adopt the convention of Fig. 2�c� that horizontal
�c� bonds have diagonal �direct-exchange� hopping of c or-
bitals, which are shown in blue, and off-diagonal �superex-
change� hopping processes for a and b orbitals �Fig. 2�b��,
respectively, red and green. Up-slanting �a� bonds have di-
agonal hopping for a orbitals and off-diagonal hopping be-
tween b and c orbitals; down-slanting �b� bonds have diag-
onal hopping for b orbitals and off-diagonal hopping
between a and c orbitals. All Hamiltonians and energies are
functions of � and �, as given by Eqs. �2.7�, �2.8�, �2.21�,
and �2.22�. To minimize additional notation, they will be

quoted in this section and in Sec. IV as functions of the
single argument �, with implicit � dependence contained in
the parameters �r1 ,r2 ,r3�. The orbital bond index � will also
be suppressed here and in Sec. IV.

We continue to refer to the orbital type as a color, and
begin by listing symmetry-inequivalent states where each
site has a unique color. If the same orbital is occupied at
every site �Fig. 3�a��, the three states with a, b, or c orbitals
occupied are physically equivalent �degeneracy is d=3�.
When lines of the same occupied orbitals alternate along the
perpendicular direction there are two basic possibilities,
which are shown in Figs. 3�b� and 3�c�. These two-color
states differ in their numbers of active superexchange or
direct-exchange bonds, which depend on how the monocol-
ored lines are oriented relative to the active hopping direc-
tion�s� of the orbital color. There is only one three-color
configuration with equal occupations, which is shown in Fig.
3�d�.

Turning to orbital states with unequal occupations, moti-
vated by the tendency of H to favor dimer formation in
certain limits, we extend our considerations to the possibility
of a four-site unit cell �Figs. 3�e� and 3�f��. More elaborate
three-color unit cells are not considered. In this case the
same state is obtained when the fourth site is occupied by
electrons whose orbital color is any of the other three. Again
this state, which breaks rotational symmetry, differs depend-
ing on its orientation relative to the active hopping axes.

States involving a superposition of either two or three
orbitals at each site can be expected to allow a significantly
greater variety of hopping processes. When either two or
three orbital states are partially occupied at each site �we
stress that the condition of Eq. �2.3� is always obeyed rigor-
ously�, one finds the two uniform states represented in Figs.

(b)(a) (c)

(d) (f)(e)

FIG. 3. �Color online� Schematic representation of possible orbital states with a single color on each site of the triangular lattice: �a�
one-color state; ��b� and �c�� two inequivalent two-color states; �d� three-sublattice three-color state; and ��e� and �f�� two inequivalent
three-color states. The latter two configurations are degenerate with similar states where the lines of occupied a and b orbitals repeat rather
than being staggered along the direction perpendicular to the lines of occupied c orbitals. The three-sublattice state �3d� is nondegenerate
�d=1�, states �3a�, �3b�, �3e� have degeneracy d=3, and states �3c� and �3f� have degeneracy d=6.
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4�a� and 4�b�. These denote the symmetric wave functions
�2	= ���a	+ ��b	� /�2 and �3	= ���a	+ ��b	+ ��c	� /�3 at ev-
ery site, where ���	=�†�0	. The remaining states shown in
Fig. 4 involve only two orbitals per site but with all three
orbitals partly occupied in the lattice. The average electron
densities per site and per orbital are 1/3 in the state of Fig.
4�c�, while in Figs. 4�d� and 4�e� they are nc= 1

2 and na=nb

= 1
4 . The latter two states are neither unique nor �for general

interactions� equivalent to each other and represent two
classes of states with respective degeneracies of 3 and 6.

B. Ordered-state energies: Superexchange

Before analyzing the different possible ordered states for
any of the model parameters, we stress that the spin interac-
tions on a given bond depend strongly on the orbital occu-
pation of that bond. We begin with the pure superexchange
model Hs �Eq. �2.8��, meaning �=0, for which the question
of spin and orbital singlets was addressed in Sec. II B. Here

the spin and orbital scalar products �S� i ·S� j	 and �T� i ·T� j	 may
take only values consistent with long-range order throughout
the system and thus vary between −1 /4 and +1 /4.

For a bond on which both electrons occupy active orbit-
als, one has the possibility of either FO or AO states. For the

FO state, �T� i ·T� j	=1 /4= �T� i�T� j	 and �Aij	= �Bij	=1, whence
the terms of Hs can be separated into the physically trans-
parent form

H1
�FO��0� =

1

2
Jr1�1

2
�ni� + nj�	�S� i · S� j +

3

4
 = 0,

H2
�FO��0� =

1

2
Jr2�2 −

1

2
�ni� + nj�	�S� i · S� j −

1

4


= Jr2�S� i · S� j −
1

4
 ,

H3
�FO� =

1

3
J�r3 − r2��S� i · S� j −

1

4
 , �3.1�

specifying a net spin interaction which, because ni�=0, must
be AF if any hopping processes are to occur. In the AO case,

�T� i ·T� j	=−1 /4= �T� i�T� j	 and �Aij	= �Bij	=0, giving

H1
�AO��0� = −

1

2
Jr1�S� i · S� j +

3

4
 ,

H2
�AO��0� =

1

2
Jr2�S� i · S� j −

1

4
 ,

H3
�AO��0� = 0, �3.2�

and the spin interaction is constant at �=0, with only a weak
FM preference emerging at finite �. We remind the reader
here that the designations FO and AO continue to be based
on the conventional notation22 obtained by a local transfor-
mation on one bond site and in the basis of the original
orbitals correspond, respectively, to opposite active orbitals

(b)

(a)

(c)

(d)

(e)

FIG. 4. �Color online� Schematic representation of possible or-
bital configurations with superpositions of �a� two orbitals in a two-
color state, �b� three orbitals, �c� two orbitals with equal net weight,
and ��d� and �e�� two orbitals with differing net weights of all three
orbitals. State �a� has degeneracy d=3, states �b� and �c� have d
=1, and the degeneracies of states �d� and �e� are d=6 and d=3.
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and to equal active orbitals. Cases where only one orbital is
active on a bond are by definition AO, but do contribute a
finite spin interaction,

H1
1�0� = −

1

4
Jr1�S� i · S� j +

3

4
 ,

H2
1�0� =

1

4
Jr2�S� i · S� j −

1

4
 ,

H3
1�0� = 0, �3.3�

which again has only a weak FM tendency at ��0. Clearly,
when neither electron may hop, the bond does not contribute
a finite energy.

We begin with the uniform, one-color orbital state of Fig.
3�a�, meaning that all bonds are AO by the definition of the
previous paragraph. In two directions both electrons are ac-
tive, while in the third none is. The energy per bond is

EFM
�3a��0� = −

1

3
Jr1 �3.4�

and the spin configuration is FM. However, an antiferromag-
netic �AF� spin configuration on the square lattice defined by
the active hopping directions has energy

EAF
�3a��0� = −

1

6
J�r1 + r2� , �3.5�

from which one observes that all spin states are degenerate at
�=0. The ordered spin state spin is then FM for any finite �.
We note in passing that the energy per bond for a square
lattice would have the significantly lower value − 1

2J for the
same Hs convention, by which is meant the presence of the
constants + 3

4 and − 1
4 in Eq. �2.8�. This result is a direct re-

flection of the geometrical frustration of the triangular lattice,
an issue to which we return in Sec. VI.

The state of Fig. 3�b� involves one set of �alternating� AO
lines with two active orbitals and two sets of �AO� lines each
with one active orbital. All sets of lines favor FM order at
finite �, with

EFM
�3b��0� = −

1

3
Jr1. �3.6�

Here the square-lattice state which becomes degenerate at
�=0, with

EAF
�3b��0� = −

1

6
J�r1 + r2� , �3.7�

is more accurately described as one with two lines of AF
spins and one of FM spins �Fig. 5�a��, and will be denoted
henceforth as AFF.

The state of Fig. 3�c� involves one set of FO lines with
two active orbitals, one set of lines with one active orbital,
one half set of AO lines with two active orbitals, and one half
set of inactive lines. The two-active FO lines will favor AF
order, while the AO and the one-active lines will favor FM
order only at ��0, giving

EAFF
�3c� �0� = −

1

72
J�9r1 + 11r2 + 4r3� �3.8�

from the AFF configuration but with two equivalent direc-
tions for the FM line. At �=0 the energy is again − 1

3J. Both
EAF

�3b��0� and EAFF
�3c� �0� can be regarded as the energy of an

unfrustrated system in the sense that the spin order enforced
in any one direction by the orbital configuration at no time
denies the system the ability to adopt the energy-minimizing
configuration in other directions. However, at finite � the
configurations shown in Figs. 3�b� and 3�c� will be penalized
relative to the uniform �AO� order of Fig. 3�a� due to the
presence of AF bonds.

We insert here an important observation: the orbital state
of Fig. 3�c� also admits the formation of 1D AF Heisenberg
spin chains on the FO �b-axis� lines. The energy per bond of
such a state includes constant interchain contributions which

are independent of the spin state ��S� i ·S� j	=0� on these bonds.
Of these interchain bonds, 1/4 are FO with two active orbit-
als and 1/2 have one active orbital. One finds

E1D
�3c��0� = −

1

9
J�2r2 + r3� ln 2 −

1

24
J�3r1 + r2� , �3.9�

which gives E1D
�3c��0�=−0.3977J at �=0. This energy is sig-

nificantly lower than that of an ordered magnetic state, a
result showing that the kinetic energy gained from resonance
processes on the chains is far more significant than the mini-
mal potential-energy gain obtainable from an ordering of the
magnetic moments on the active interchain bonds which are

(b)

(a)

FIG. 5. �Color online� Spin configurations minimizing the total
energy of the superexchange Hamiltonian Hs ��=0� for given fixed
patterns of orbital order: �a� AFF state for the orbital ordering pat-
tern of Fig. 3�c�, showing how the FM line is selected by the direc-
tion �here b� giving zero frustration; �b� 60–120° ordered spin con-
figuration minimizing the total energy for the orbital ordering
pattern of Fig. 3�d�.
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active, and thus provides strong evidence in favor of the
hypothesis that any ordered state will “melt” to a quantum
disordered one in this system. We will return to this issue
below.

For the two-color superposition �Fig. 4�a��, one set of
bonds always has two active orbitals, but with equal prob-
ability of being FO or AO, while the other two sets of bonds
have a 1/4 probability of having two active orbitals, which
are FO, or a 1/2 probability of having one active orbital �and
a 1/4 probability of having none�. Under these circum-
stances, the net system Hamiltonian can be expressed by
summing over all the possible orbital states, although this is
not necessarily a useful exercise when the spin state may not
be isotropic. By inserting the three most obvious ordered
spin states, FM, AF �meaning here the AF state of the trian-

gular lattice with 120° bond angles and �S� i ·S� j	=− 1
8 � and

AFF, the candidate energies are

EFM
�4a��0� = −

1

6
Jr1,

EAF
�4a��0� = EAFF

�4a� �0� = −
1

48
J�5r1 + 7r2 + 2r3� . �3.10�

The coincidence for the results for the AF and AFF ordered
states in this case is an accidental degeneracy. The final en-
ergy EAF�AFF�

�4a� =− 7
24J at �=0 shows that both states are com-

promises, and it is not possible to put all bonds in their
optimal spin state simultaneously. This arises because of the
presence of two active FO components in all three lattice
directions and will emerge as a quite generic feature of su-
perposition states, albeit not one without exceptions.

In general there is no compelling reason �given by H for
any value of �� to expect that two-color superpositions of
this type may be favorable. While the 120° state of a
triangular-lattice antiferromagnet is one compromise within a
space of SU�2� operators, this type of symmetry-breaking is
not relevant within the orbital sector, where there are three
colors, and the two-color subsector of active orbitals in the
�=0 limit changes as a function of the bond orientation.

In the equally weighted three-color state �Fig. 3�d��, all
bonds are FO and it is easy to show that 1/3 of them �ar-
ranged as isolated triangles� have two active orbitals while
the other 2/3 have one active orbital. The two-active bonds
favor AF order while the one-active bonds have only a weak
preference for FM order at finite �. In this case the problem
becomes frustrated and is best resolved by a kind of AF state
on the triangular lattice where the strong triangles have 120°
angles and alternating triangles have spins either all pointing
in or all pointing out �Fig. 5�b��; then 2/3 of the intertriangle
bonds have 60° angles, while the other 1/3 have 120° angles.
The energy of this state is

E�3d��0� = −
1

144
J�19r1 + 17r2 + 6r3� , �3.11�

and E�3d��0�=− 7
24J at �=0, a value again inferior to the op-

timal energy due to the manifest spin frustration.

In the state of Fig. 3�e�, the only AO bonds �1/6 of the
total� contain inactive orbitals. Of the remaining bonds, 3/6
have two active FO orbitals �in all three directions� and 2/6
have one active orbital. Once again the system is composed
of strongly coupled triangles but this time in a square array
and with strong coupling in their basal direction by one set of
two active FO bonds. Possible competitive spin-ordered
states would be AF or AFF, with energies

EAF
�3e��0� = −

1

96
J�5r1 + 15r2 + 6r3� ,

EAFF
�3e� �0� = −

1

288
J�15r1 + 35r2 + 16r3� . �3.12�

The lowest energy is obtained for 120° AF order, with the
frustrated value EAF

�3e��0�=− 13
48J for �=0.

For the state in Fig. 3�f� the FO bonds �1/6� and only 1/6
of the AO bonds have two active orbitals, while the other 2/3
of the bonds have one active orbital. In this case,

EFM
�3f��0� = −

1

4
Jr1,

EAF
�3f��0� = −

1

96
J�15r1 + 13r2 + 2r3� ,

EAFF
�3f� �0� = −

1

192
J�36r1 + 17r2 + 5r3� , �3.13�

leading again to an AF spin state. At �=0 one has EAF
�3f��0�

=− 5
16J, i.e., relatively weaker frustration.
Turning now to three-color superpositions, the “uniform”

orbital state �Fig. 4�b�� is one in which on every bond there is
a probability 2/9 of having two active FO orbitals, 2/9 for
two active AO orbitals, 4/9 of one active orbital, and 1/9 of
no active orbitals. The appropriately weighted bond interac-
tion strengths may be summed to give the net interaction,
which for the three spin states considered result in the ener-
gies

EFM
�4b��0� = −

2

9
Jr1,

EAF
�4b��0� = −

1

36
J�5r1 + 5r2 + r3� ,

EAFF
�4b��0� = −

1

81
J�12r1 + 10r2 + 2r3� , �3.14�

and thus the AF state is lowest, with the value EAF
�4b��0�

=− 11
36J at �=0. While this orbital configuration does not at-

tain the minimal energy of − 1
3J, it is a close competitor:
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although it involves every bond, the fractional probabilities
of each being in a two-active state mean that it cannot maxi-
mize individual bond contributions. However, we will see in
Sec. III D that state �4b� lies lowest over much of the phase
diagram �0	�	1� as a result of the contributions from
mixed terms.

For states with unequal site occupations, in Fig. 4�c� one
has a situation where on 1/3 of the bonds �arranged in sepa-
rate triangles� there is a 1/4 probability of two active FO
orbitals and a 1/2 probability of one active orbital, while on
the remaining 2/3 of the bonds there is a 1/4 probability of
two active AO orbitals, 1/4 of two active FO orbitals, and 1/2
of having one active orbital. On computing the net energies
for the three standard spin configurations, one obtains

EFM
�4c��0� = −

5

24
Jr1,

EAF
�4c��0� = −

1

192
J�25r1 + 25r2 + 8r3� ,

EAFF
�4c� �0� = −

1

216
J�30r1 + 25r2 + 8r3� , �3.15�

where the AF state with EAF
�4c��0�=− 29

96J is the lowest at �
=0. However, this state is also manifestly frustrated.

In the unequally weighted state of Fig. 4�d�, the problem
is best considered once again as lines of different bond types.
Here 1/6 of the lines have two active orbitals �1/2 FO and 1/2
AO�, 1/6 of the lines have probability 1/4 of two active or-
bitals �AO� and 1/2 of one active orbital, 1/3 of the lines
have probability 1/4 of two active FO orbitals, 1/4 of two
active AO orbitals, and 1/2 of one active orbital, and the
remaining 1/3 of the lines have probability 1/4 of two active
orbitals �FO� and 1/2 of one active orbital. The ordered spin
states yield the energies

EFM
�4d��0� = −

5

24
Jr1,

EAF
�4d��0� = −

1

192
J�25r1 + 27r2 + 6r3� ,

EAFF
�4d��0� = −

1

144
J�21r1 + 17r2 + 4r3� , �3.16�

whence it is again the AF state, with a small degree of unre-
lieved frustration in its energy EAF

�4d��0�=− 29
96J, which lies

lowest at �=0.
Finally, the state of Fig. 4�e� has the orbital pattern of Fig.

4�d� rotated in such a way that the number of active orbitals
in different bond directions is changed. Now 1/3 of the bonds
have probabilities 1/4 of two active orbitals �AO� and 1/2 of
one active orbital, while the remaining 2/3 have probabilities
1/4 of two active orbitals �FO�, 1/4 of two active orbitals
�AO�, and 1/2 of one active orbital. The ordered-state ener-
gies are

EFM
�4e��0� = −

1

4
Jr1,

EAF
�4e��0� = −

1

96
J�15r1 + 13r2 + 2r3� ,

EAFF
�4e� �0� = −

1

36
J�6r1 + 5r2 + r3� �3.17�

of which the AFF state lies lowest at �=0, achieving the
unfrustrated value EAFF

�4e� �0�=− 1
3J. That it is possible to obtain

this energy in an orbital superposition is because of the ab-
sence of FO bond contributions in one direction, which can
then be chosen to be FM. The results of this section and the
conclusions one may draw from them are summarized in
Sec. III E below.

C. Ordered-state energies: Direct exchange

In the limit of only direct exchange, the analysis is some-
what simpler. The Hamiltonian is Hd given by Eq. �2.21�,
and in this case a particle on any site is active in only one
direction, which leads to the immediate observation that in a
static orbital configuration it is never possible to have, on
average, active exchange processes on more than 2/3 of the
bonds. For simplicity we repeat the Hamiltonian for the two
cases of AO order between sites, in which case by definition
at most one of the orbitals is active, and FO order between
sites, which is restricted to the case where neighboring sites
have the same orbital color and the correct bond orientation.
We stress that in this section the definitions FO and AO are
entirely conventional, as the local transformation of Sec. II B
is not relevant at �=1, and thus the designation FO implies
orbitals of the same color and AO orbitals of different colors.
One obtains the expressions

H�AO��1� =
1

4
J�− r1�S� i · S� j +

3

4
 + r2�S� i · S� j −

1

4
� ,

�3.18�

H�FO��1� =
1

3
J�2r2 + r3��S� i · S� j −

1

4
 , �3.19�

which in the �=0 limit reduce to the forms

H�AO��1� = −
1

4
J , �3.20�

H�FO��1� = J�S� i · S� j −
1

4
 . �3.21�

It is clear �Sec. II� that for a single bond, the most favor-
able state is a spin singlet, which would contribute energy
−J, but at the possible expense of placing all of the neigh-
boring bonds in suboptimal states. The very strong prefer-
ence for such singlet bonds means that any mean-field study
of the minimal energy is incomplete without the consider-
ation of dimerized �or VB� states �Sec. IV�. The analysis of
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this section can be considered as elucidating the optimal en-
ergies to be gained from long-ranged magnetic and orbital
order on these bonds, where the optimal energy of any one is
− 1

2J. Also as noted in Sec. II, any active AO bond gains an
exchange energy �− 1

4J� simply because it does not prevent
one of the two particles from performing virtual hopping
processes, and for this we adopt the term “avoided block-
ing.” In the limit of zero Hund exchange, these will give a
highly degenerate manifold of all possible spin states from
which FM states are selected at finite �.

We begin again with the one-color state of Fig. 3�a�,
which we denote henceforth as �3a�. Only one set of lattice
bonds has finite interactions, all FO, and therefore the system
behaves as a set of AF Heisenberg spin chains with energy
per bond,

EAF1D
�3a� �1� = −

1

9
J�2r2 + r3� ln 2, �3.22�

whence EAF1D
�3a� �1�=−0.2310J at �=0.

In state �3b�, the FO lines do not correspond to active
hopping directions. The remaining two directions then form
an AO square lattice with

EFM
�3b��1� = −

1

6
Jr1. �3.23�

This can be called a “pure avoided-blocking” energy. The
spins are unpolarized at �=0, where all bond spin states are
equivalent, but any finite � will select FM order �hence the
notation�. We will see in the remainder of this section that
E=− 1

6J is the optimal energy obtainable by a 2D ordered
state in the direct-exchange limit ��=1�, where the net en-
ergy is generically higher than at �=0 quite simply because
there are half as many hopping channels. Thus the “melting”
of such ordered states into quasi-1D states becomes clear
from the outset and can be understood due to the very low
connectivity of the active hopping network on the triangular
lattice.

In state �3c�, one of the FO lines is active and forms AF
Heisenberg spin chains. Electrons in the other FO line are
active only in a cross-chain direction, where their bonds are
AO and gain avoided-blocking energy, whence

EAF
�3c��1� = −

1

12
J�2 ln 2 + 1� = − 0.1988J �3.24�

at �=0. As in Sec. III D, the coherent state of each Heisen-
berg chain is not altered by the presence of additional elec-
trons from other chains executing virtual hopping processes
onto empty orbitals of individual sites. The spin chains re-
main uncorrelated and only quasi-long-range-ordered until a
finite value of �, where FM spin polarization and a long-
range-ordered state are favored.

In the two-color superposition �4a�, 1/3 of the bonds are
inactive, while on the other 2/3 one has probability 1/4 of
two active electrons �FO�, 1/2 of one active electron �AO�,
and 1/4 of two inactive electrons. In this case, one obtains an
effective square lattice on which an AF spin configuration is
favored by the FO processes, with

EAF
�4a��1� = −

1

72
J�3r1 + 7r2 + 2r3� , �3.25�

so again EAF
�4a��1�=− 1

6J at �=0.
The uniform three-color state �3d� maximizes AO bonds,

but 1/3 of the bonds on the lattice remain inactive. Thus

EFM
�3d��1� = −

1

6
Jr1, �3.26�

and Hund exchange will select the FM spin state.
The three-color state �3e� has FO lines oriented in their

active direction and will, as in state �3c�, form Heisenberg
chains linked by bonds with AO order. While the geometry
of the interchain coupling can differ depending on the orbital
alignment in the inactive chains, it does not create a frus-
trated spin configuration and the net energy is EAF

�3e��1�
=EAF

�3c��1�. State �3f� has only inactive FO lines and so gains
only avoided-blocking energy from 2/3 of the bonds in the
system, whence EFM

�3f��1�=EFM
�3d��1�.

In the uniform three-color superposition �4b�, every bond
has probability 1/9 of containing two active electrons �FO�,
4/9 of one active electron, and 4/9 of remaining inactive. For
the three different ordered spin configurations considered in
Sec. III B the energies are

EFM
�4b��1� = −

1

9
Jr1,

EAF
�4b��1� = −

1

72
J�5r1 + 5r2 + r3� ,

EAFF
�4b��1� = −

1

81
J�6r1 + 5r2 + r3� , �3.27�

and one finds the energy EAF
�4b��1�=− 11

72J for the 120° AF state
at �=0.

The three-color state �4c� is one in which 1/3 of the bonds
�arranged on isolated triangles� have probability 1/4 of being
in a state with two active electrons and 1/2 of containing one
active electron, while on the other 2/3 of the bonds there is
simply a 1/2 probability of one active orbital. The respective
energies are

EFM
�4c��1� = −

1

8
Jr1,

EAF
�4c��1� = −

1

192
J�15r1 + 13r2 + 2r3� ,

EAFF
�4c� �1� = −

1

216
J�18r1 + 13r2 + 2r3� . �3.28�

At �=0, the energy EFM
�4c��1�=− 5

32J is minimized by a 120°
state on the triangles, which are also isolated magnetically in
this limit. Finite values of � result in FM interactions be-
tween the triangles, and a frustrated problem in the spin sec-
tor which by inspection is resolved in favor of a net FM
configuration only at large � ���0.23�.
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Finally, the three-color states �4d� and �4e� yield two pos-
sibilities in the �=1 limit, namely, either one of the minority
colors is aligned with its active direction, or neither color is
aligned. In the former case,

EFM
�4d��1� = −

5

48
Jr1,

EAF
�4d��1� = −

1

384
J�25r1 + 27r2 + 6r3� ,

EAFF
�4d��1� = −

1

96
J�7r1 + 7r2 + 2r3� , �3.29�

and the lowest energy EAFF
�4d��1�=− 1

6J at �=0 is given by the
directionally anisotropic AFF spin configuration. This is be-
cause 1/2 of the lines, in two of the three directions, have
some AF preference from their 1/4 probability of containing
two active orbitals, while the third direction has no prefer-
ence at �=0 and in any case favors FM spins at ��0. In the
latter case, the only AF tendencies arise along lines in a
single direction, but avoided-blocking energy is sufficient to
exclude the possibility of a Heisenberg-chain state. Here

EFM
�4e��1� = −

1

8
Jr1,

EAF
�4e��1� = −

1

192
J�15r1 + 13r2 + 2r3� ,

EAFF
�4e� �1� = −

1

72
J�6r1 + 5r2 + r3� , �3.30�

whence EAFF
�4e� �1�=− 1

6J at �=0, in fact, with two degenerate
possibilities for the orientation of the FM line.

D. Ordered-state energies: �=0.5

To illustrate the properties of the model in the presence of
finite direct and superexchange contributions, i.e., at interme-
diate values of �, we consider the point �=0.5. As shown in
Sec. II, there is no special symmetry at this point because the
contributions from diagonal and off-diagonal hopping pro-
cesses remain intrinsically different. States with long-ranged
orbital �and spin� order at �=0.5 are mostly very easy to
characterize, because all virtual processes, of both types, al-
lowed by the given configuration are able to contribute in
full to the net energy. For many of the states considered in
this section, the energetic calculation for �=0.5 is merely an
exercise in adding the �=0 and �=1 results with equal
weight. Exceptions occur for superposition states gaining en-
ergy from processes contained in Hm �Eq. �2.22�� and are, in
fact, decisive here. Because these terms involve explicitly a
finite density of orbitals of all three colors on the bond in
question, with the active diagonal color represented on both
sites, only for states �4b�–�4d�, but not �4e� �Figs. 4�b�–4�e��,
will it be necessary to consider this contribution.

For state �3a� in two directions both electrons are active
by off-diagonal hopping, while in the third both may hop

diagonally. Diagonal hopping favors an AF spin configura-
tion, while the off-diagonal-hopping bonds have only a weak
preference �by Hund exchange� for FM order. The ordered-
state spin solution is then a doubly degenerate AFF state with
energy per bond

E�3a��0.5� = −
1

72
J�9r1 + 7r2 + 2r3� , �3.31�

giving E�3a��0.5�=− 1
4J at �=0. We remind the reader that the

prefactor of the superexchange and direct-exchange contri-
butions is only half as large as in Secs. III B and III C �Eq.
�2.7��, so the overall effect of additional hopping processes
in this state is, in fact, an unfrustrated energy summation. We
also comment that, exactly at �=0, there is no obvious pref-
erence for any magnetic order between the diagonal-hopping
chains. Only at unrealistically large values of � would the
system sacrifice this diagonal-hopping energy to establish a
square-lattice FM state. At finite �, the one-color orbital state
represents a compromise between competing spin states pre-
ferred by the two types of hopping contribution.

State �3b� has no diagonal-hopping chains, and these pro-
cesses therefore enforce only a weak preference for a FM
square lattice. Because the off-diagonal-hopping processes
also favor FM order at finite � �Sec. III B�, the two types of
contribution cooperate and one obtains

E�3b��0.5� = −
1

4
Jr1. �3.32�

State �3c� contains one half set of diagonal-hopping
chains, which fall along one of the directions which in the
spin state favored by the off-diagonal-hopping processes
could be FM or AF; this degeneracy will therefore be broken.
The other half set of chains will gain only avoided-blocking
energy from diagonal processes, which will take place in the
FM direction and thus cause no frustration even at finite �.
One obtains

E�3c��0.5� = −
1

144
J�3r1 + 7r2 + 2r3� �3.33�

and thus E�3c��0.5�=− 1
4J at �=0 from this AFF configura-

tion. The additive contributions from superexchange and di-
rect exchange remove the possibility that Heisenberg-chain
states in either of the directions favored separately by off-
diagonal �Sec. III B� or diagonal �Sec. III C� hopping could
result in an overall lowering of energy.

As in Sec. III C, in the two-color superposition �4a� the
diagonal-hopping processes are optimized by an AFF spin
configuration. Although this is one of the degenerate states
minimizing the off-diagonal Hamiltonian, the directions of
the FM lines do not match. Insertion of the four possible spin
states yields
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EFM
�4a��0.5� = −

1

8
Jr1,

EAF
�4a��0.5� = −

1

96
J�8r1 + 10r2 + 3r3� ,

EAFF�0�
�4a� �0.5� = −

1

72
J�6r1 + 7r2 + r3� ,

EAFF�1�
�4a� �0.5� = −

1

144
J�12r1 + 14r2 + 3r3� , �3.34�

whence the lowest final energy is EAF
�4a��0.5�=− 7

32J at �=0.
As noted in Secs. III B and III C for this spin configuration,
the optimal energy for all bonds is not attainable within the
off-diagonal-hopping sector, and the addition of the �small�
diagonal-hopping contribution causes little overall change.

The equally weighted three-color state �3d� has no lines of
diagonal-hopping bonds, and in fact these contribute only
avoided-blocking energy on the bonds between the strong
triangles defined by the off-diagonal problem, adding to the
weak propensity for FM intertriangle bonds arising only
from the Hund exchange. The diagonal processes can be
taken only to alter this energy and not to promote any ten-
dency toward an alteration of the spin state, whose energy is
then

E�3d��0.5� = −
1

144
J�19r1 + 11r2 + 3r3� , �3.35�

with E�3d��0.5�=− 11
48J at �=0.

State �3e� is already frustrated in the off-diagonal sector,
and diagonal-hopping processes contribute primarily on oth-
erwise inactive bonds without changing the frustration con-
ditions. For the two candidate spin configurations,

EAF
�3e��0.5� = −

1

96
J�5r1 + 12r2 + 4r3�

and

EAFF
�3e� �0.5� = −

1

192
J�11r1 + 19r2 + 8r3� , �3.36�

a competition won by the 120° AF-ordered state with
EAF

�3e��0.5�=− 7
32J at �=0.

State �3f� lacks active lines of diagonal-hopping pro-
cesses, and thus the avoided-blocking energy may be added
simply to the results for the off-diagonal sector, giving

EFM
�3f��0.5� = −

5

24
Jr1,

EAF
�3f��0.5� = −

1

192
J�25r1 + 19r2 + 2r3� ,

EAFF
�3f� �0.5� = −

5

384
J�12r1 + 5r2 + r3� , �3.37�

or a minimum of EAF
�3f��0.5�=− 23

96J at �=0.

In the uniform three-color superposition �4b�, on every
bond there is a probability 4/9 of having only off-diagonal-
hopping processes, 2/9 for two active FO orbitals and 2/9 for
two active AO orbitals, a probability 1/9 of having only
diagonal-hopping processes, and a probability 4/9 of other
processes. These last include the contributions from one ac-
tive diagonal or off-diagonal electron and mixed processes
contained in the Hamiltonian Hm �Eq. �2.22��; none of these
three possibilities favors any given bond spin configuration
other than a FM orientation at finite �. The net energy con-
tributions are

EFM
�4b��0.5� = −

2

9
Jr1,

EAF
�4b��0.5� = −

1

144
J�20r1 + 18r2 + 3r3� ,

EAFF
�4b��0.5� = −

1

54
J�8r1 + 6r2 + r3� , �3.38�

and thus the AF state is lowest, with EAF
�4b��0.5�=− 41

144J at �
=0. While this energy differs from that for the AFF spin
configuration by only 1

144J, its crucial property is that it lies
below the value − 1

4J obtained by direct summation of the
superexchange and direct-exchange contributions.

For this orbital configuration, all three spin states gain a
net energy of − 1

18J at �=0 from mixed processes, and these
are sufficient, as we shall see, to reduce the otherwise par-
tially frustrated ordered-state energy to the global minimum
for this value of �. By a small extension of the calculation,
the energy of the 120° AF spin state may be deduced at �
=0 for all values of � and is given by

EAF
�4b���� = −

1

72
J�22 − 11� + 8���1 − ��� . �3.39�

Comparison with the value obtained by direct summation,
E=− 1

6 �2−��, reveals that state �4b� is the lowest-lying fully
spin and orbitally ordered configuration in the region 0.063
	�	0.983. That this state dominates over the majority of
the phase diagram is a direct consequence of its ability to
gain energy from mixed processes.

The nonuniform three-color state �4c� also presents a deli-
cate competition between spin configurations of very similar
energies. From Secs. III A–III C, it is clear that in this case
diagonal and off-diagonal processes favor different ground
states, while there will also be a mixed contribution from 1/3
of the bonds. The energies of the three standard spin configu-
rations are

EFM
�4c��0.5� = −

1

12
Jr1,

EAF
�4c��0.5� = −

1

384
J�45r1 + 41r2 + 10r3� ,

EAFF
�4c� �0.5� = −

1

432
J�54r1 + 41r2 + 10r3� , �3.40�

where the AF state, obtaining EAF
�4c��0.5�=− 1

4J, is the lowest at
�=0.
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Finally, in the three-color states �4d� and �4e�, which are
composed of lines of two-color sites, this delicate balance
between different spin configurations persists. For configura-
tion �4d�, an AFF state with the same orientation of the FM
line �along the b axis� is both favored by diagonal-hopping
processes and competitive for off-diagonal processes. With
inclusion of a small contribution due to mixed processes, the
three ordered spin states have energies

EFM
�4d��0.5� = −

51

288
Jr1,

EAF
�4d��0.5� = −

1

768
J�85r1 + 84r2 + 18r3� ,

EAFF
�4d��0.5� = −

1

576
J�71r1 + 59r2 + 14r3� , �3.41�

from which the AFF state minimizes the energy at �=0 with
EAFF

�4d��0.5�=− 1
4J.

For state �4e�, which has no mixed contribution, the ori-
entations of the FM lines in the optimal AFF states do not
match, and it is necessary, as above, to consider both possi-
bilities when performing a full comparison. These four or-
dered spin states yield the energies

EFM
�4e��0.5� = −

3

16
Jr1,

EAF
�4e��0.5� = −

1

128
J�15r1 + 13r2 + 2r3� ,

EAFF�0�
�4e� �0.5� = −

1

144
J�18r1 + 13r2 + 2r3� ,

EAFF�1�
�4e� �0.5� = −

1

48
J�6r1 + 4r2 + r3� , �3.42�

among which the AF state, in fact, lies lowest at �=0,
achieving the weakly frustrated value EAF

�4e��0.5�=− 15
64J.

E. Summary

Here we summarize the results of this section in a concise
form. For the superexchange model ��=0�, a considerable
number of 2D ordered orbital and spin states exist which
return the energy − 1

3J at �=0. This degeneracy is lifted at
any finite Hund exchange in favor of orbital states ��3a� and
�3b�� permitting a fully FM spin alignment. Most other or-
bital configurations introduce a frustration in the spin sector
at small �, while some offer the possibility of a change in
ground-state spin configuration at finite �, where r1 exceeds
the r2 and r3 contributions and begins to favor states with
more FM bonds.

However, the value E=− 1
3J per bond remains a rather

poor minimum for a system as highly connected as the tri-
angular lattice, even if, as in the superexchange limit, active
hopping channels exist only in two of the three lattice direc-

tions for each orbital color. Indeed, the limitations of the
available ordering �potential� energy are clearly visible from
the fact that a significantly lower overall energy is attained in
systems which abandon spin order in favor of the resonance
�kinetic� energy gains available in one lattice direction. The
result E1D

�3c��0�=−0.3977J is the single most important ob-
tained in this section and in a sense obviates all of the con-
siderations made here for fully ordered states, mandating the
full consideration of 2D magnetically and orbitally disor-
dered phases.

In the study of ordered states, it becomes clear that the
Hund exchange acts to favor FM spin alignments at high �.
Because the “low-spin” states of minimal energy are, in fact,
stabilized by quantum corrections due to AF spin fluctua-
tions, the lowest energies at �=0 are never obtained for FM
states, and therefore increasing � drives a phase transition
between states of differing spin and orbital order. We show in
Fig. 6 the transitions from quasi-1D AF-correlated states at
low �, for both �=0 and �=1, to FM states of fixed orbital
and spin order �3b�. The transitions occur at the values
�c�0�=0.085 and �c�1�=0.097, indicating that FM ordered
states may well compete in the physical parameter regime.
We note again that the energies in the superexchange limit
are lower by approximately a factor of 2 compared to the
direct-exchange limit simply because of the number of avail-
able hopping channels.

We note also that there is never a situation in which the
spin Hamiltonian becomes that of a Heisenberg model on a
triangular lattice. This demonstrates again the inherent frus-
tration introduced by the orbital sector. However, the fact
that the ordered-state energy can never be lowered to the
value EHAF=− 3

8J, which might be expected for a two-active
FO situation on every bond, far less the value − 1

2J which
could be achieved if it were possible to optimize every bond
in some ordered configuration, can be taken as a qualitative
reflection of the fact that on the triangular lattice the orbital
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FIG. 6. �Color online� Minimum energies per bond obtained for
orbitally ordered phases, showing a transition as a function of Hund
exchange � from a quasi-1D, AF-correlated state to a FM state. For
the superexchange Hamiltonian Hs of Sec. II ��=0�, the transition
is from the quasi-1D spin state on orbital configuration �3c� �black,
dashed line from Eq. �3.9�� to the one-color orbital state �3a� �red,
solid line from Eq. �3.4��. For the direct-exchange Hamiltonian Hd

��=1�, the transition is from the purely 1D spin state on the one-
color orbital state �3a� �green, dot-dashed line from Eq. �3.22�� to
the two-color, avoided-blocking state �3b� �blue, dotted line from
Eq. �3.23��. The transitions to FM order as obtained from the mean-
field considerations of this section are marked by arrows.
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degeneracy “enhances” rather than relieves the �geometrical�
frustration of superexchange interactions �Sec. VI�.

The limit of direct exchange ��=1� is found to be quite
different: the very strong tendency to favor spin-singlet states
and the inherent one-dimensionality of the model in this limit
�one active hopping direction per orbital color� combine to
yield no competitive states with long-ranged magnetic order.
Their optimal energy is very poor, because of the restricted
number of hopping channels, and coincides with the
�avoided-blocking� value for the model with only AO bonds,
E=− 1

6J. Thus these states form part of a manifold with very
high degeneracy. However, even at this level it is clear that
more energy, meaning kinetic �from resonance processes�
rather than potential, may be gained by forming quasi-1D
Heisenberg-chain states with little or no interchain coupling
and only quasi-long-ranged magnetic order. Studies of or-
bital configurations permitting dimerized states are clearly
required �Sec. IV�. Finite Hund exchange acts to favor or-
dered FM configurations, which will take over from chain-
like states at sufficiently high values of � �Fig. 6�.

Finally, ordered states of the mixed model show a number
of compromises. At �=0.5, where the coefficients of super-
exchange and direct exchange are equal, some configurations
are able to return the unfrustrated sum of the optimal states
in each sector when considered separately, namely − 1

4J.
However, superposition states, which are not optimal in ei-
ther limit, can redeem enough energy from mixed processes
to surpass this value, and in fact the maximally superposed
configuration �4b� is found to minimize the energy over the
bulk of the phase diagram. Still, the net energy of such states
remains small compared to expectations for a highly con-
nected state with three available hopping channels per orbital
color. Because of the directional mismatch between the di-
agonal and off-diagonal-hopping sectors, no quasi-1D states
with only chainlike correlations are able to lower the
ordered-state energy in the intermediate regime.

IV. DIMER STATES

As shown in Sec. II, the spin-orbital model on a single
bond favors spin or orbital dimer formation in the superex-
change limit and spin dimer formation in the direct-exchange
limit. The physical mechanism responsible for this behavior
is, as always, the quantum fluctuation energy gain from the
highly symmetric singlet state. On the basis of this result,
combined with our failure to find any stable energetically
competitive states with long-ranged spin and orbital order in
either limit of the model �Sec. III�, we proceed to examine
states based on dimers. Given the high connectivity of
the triangular lattice, dimer-based states are not expected
a priori to be capable of attaining lower energies than or-
dered ones, and if found to be true it would be a consequence
of the high frustration, which as noted in Sec. I has its origin
in both the interactions and the geometry. Here we consider
static dimer coverings of the lattice �Sec. II F� and compute
the energies they gain due to intersinglet correlations. The
tendency toward the formation of singlet dimer states will be
supported by the numerical results in Sec. V, which will also
address the question of resonant dimer states.

A. Superexchange model

Motivated by the fact that the spin and orbital sectors in
Hs �Eq. �2.8�� are not symmetrical, we proceed with a simple
decoupling of spin and orbital operators. Extensive research
on spin-orbital models has shown that this procedure is un-
likely to capture the majority of the physical processes con-
tributing to the final energy, particularly in the vicinity of
highly symmetric points of the general Hamiltonian. The re-
sults to follow are therefore to be treated as a preliminary
guide and a basis from which to consider a more accurate
calculation of the missing energetic contributions. We remind
the reader that the notation FO and AO used in this section
are again those obtained by performing a local transforma-
tion on one site of every dimer. As noted in Sec. II B, this
procedure is valid for the discussion of states based on indi-
vidual dimerized bonds, where it represents merely a nota-
tional convenience. For FO configurations, which in the
original basis have different orbital colors, one might in prin-
ciple expect that, because of the color degeneracy, there
should be more ways to realize these without frustration than
there are to realize AF spin configurations; however, because
of the directional dependence of the hopping, we will find
that this is not necessarily the case �below�.

The basic premise of the spin-orbital decoupling is that if
the spin �orbital� degrees of freedom on a dimer bond form a

singlet state, their expectation value �S� i ·S� j	 ��T� i ·T� j	� on the
neighboring interdimer bonds will be precisely zero. The op-
timal orbital �spin� state of the interdimer bond may then be
deduced from the effective bond Hamiltonian obtained by
decoupling. Because Hs depends on the number of electrons
on the sites of a given bond which are in active orbitals, and
this number is well defined only for the dimer bonds, the
effective Hamiltonian will be obtained by averaging over all
occupation probabilities. In contrast to the pure Heisenberg
spin Hamiltonian, here the interdimer bonds contribute with
finite energies, and the dimer distribution must be optimized.
A systematic optimization will not be performed in this sec-
tion, where we consider only representative dimer coverings
giving the semiquantitative level of insight required as a pre-
lude to adding dimer resonance processes �Sec. V�.

On the triangular lattice there are three essentially differ-
ent types of interdimer bond, which are shown in Fig. 7. For
a “linear” configuration �Fig. 7�a��, the number of electrons
in active orbitals on the interdimer bond is two; for the eight
possible configurations where one dimer bond is aligned
with the interdimer bond under consideration �Fig. 7�b��, the
number is one on the corresponding site and one or zero with
equal probability on the other; for the 14 remaining configu-
rations where neither dimer bond is aligned with the inter-
dimer bond �Fig. 7�c��, the number is one or zero for both
sites. The number of electrons in active orbitals is then two
for type �7a�, two or one, each with probability 1/2, for type
�7b�, and two, one, or zero with probabilities 1/4, 1/2, and
1/4 for type �7c�.

The effective interdimer interactions for each type of
bond can be deduced in a manner similar to the treatment of
Sec. III. Considering first the situation for a bond of type �7a�
with �os/st� dimers, setting �T� i ·T� j	=0 yields one high-spin
and two low-spin terms which contribute
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H1
�os,7a��0� = −

1

4
Jr1�S� i · S� j +

3

4
 ,

H2
�os,7a��0� =

3

4
Jr2�S� i · S� j −

1

4
 ,

H3
�os,7a��0� =

1

6
J�r3 − r2��S� i · S� j −

1

4
 . �4.1�

Clearly H1
�os,7a� favors FM �high-spin� interdimer spin con-

figurations with coefficient 1
4 , while H2

�os,7a� and H3
�os,7a� favor

AF �low-spin� configurations with coefficient 3
8 �both at �

=0�. Because r1 exceeds r2 and r3 when Hund exchange is
finite, one expects a critical value of � where FM configu-
rations will be favored. Simple algebraic manipulations us-
ing all three terms suggest that this value, which should be
relevant for a linear chain of �os/st� dimers, is �c= 1

8 . In the
limit �→0, the effective bond Hamiltonian simplifies to

Heff
�os,7a��0� =

1

2
J�S� i · S� j −

3

4
 . �4.2�

For a bond of type �7a� with �ss/ot� dimers, setting

�S� i ·S� j	=0 on the interdimer bond yields

H1
�ss,7a��0� =

3

4
Jr1�T� i · T� j −

1

4
 ,

H2
�ss,7a��0� = −

1

4
Jr2�T� i · T� j +

3

4
 ,

H3
�ss,7a��0� = −

1

6
J�r3 − r2��T� i � T� j +

1

4
 . �4.3�

Here H1
�ss,7a� favors AO configurations with coefficient 3

8 ,
while H2

�ss,7a� and H3
�ss,7a� both favor FO configurations with

coefficient 1
4 �at �=0�. Over the relevant range of Hund ex-

change coupling, 0	�	1 /3, there is no change in sign and

AO configurations are always favored. The effective bond
Hamiltonian for �→0 is

Heff
�ss,7a��0� =

1

2
J�T� i · T� j −

3

4
 . �4.4�

For bonds of type �7b�, when only one electron occupies
an active orbital the corresponding decoupled interdimer
bond Hamiltonians are, for �os/st� dimers,

H1
�os,1��0� = −

1

4
Jr1�S� i · S� j +

3

4
 ,

H2
�os,1��0� =

1

4
Jr2�S� i · S� j −

1

4
 ,

H3
�os,1��0� = 0. �4.5�

The final interdimer interaction is obtained by averaging
over these expressions and those �Eq. �4.1�� for two active
orbitals per bond and takes the rather cumbersome form

Heff
�os,7b��0� =

1

12
J�r3 + 5r2 − 3r1�S� i · S� j −

1

48
J�9r1 + 5r2 + r3� ,

�4.6�

which reduces in the limit �→0 to

Heff
�os,7b��0� =

1

4
J�S� i · S� j −

5

4
 . �4.7�

For �ss/ot� dimers, the situation cannot be formulated analo-
gously, because if only one electron on the bond is active, the
orbital state of the other electron has no influence on the

hopping process, i.e., T� i ·T� j is not a meaningful quantity. The
resulting expressions lead then to

Heff
�ss,7b��0� =

1

8
J�3r1 − r2�T� i · T� j −

1

12
J�r3 − r2�T� i � T� j

−
1

48
J�9r1 + 5r2 + r3� , �4.8�

which has the �→0 limit,

Heff
�ss,7b��0� =

1

4
J�T� i · T� j −

5

4
 . �4.9�

Finally, for a bond of type �7c�, there is no contribution
from interdimer bond states with no electrons in active orbit-
als, so the above results �Eqs. �4.1�, �4.3�, �4.5�, and �4.8��
are already sufficient to perform the necessary averaging.
With �os/st� dimers,

Heff
�os,7c��0� =

1

48
J�2r3 + 13r2 − 9r1�S� i · S� j

−
1

192
J�27r1 + 13r2 + 2r3� , �4.10�

which reduces in the limit �→0 to

(b)

(a)

(c)

FIG. 7. �Color online� Types of interdimer bond differing in
effective interaction due to dimer coordination: �a� linear, �b� semi-
linear, and �c� nonlinear.
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Heff
�os,7c��0� =

1

8
J�S� i · S� j −

7

4
 , �4.11�

while for �ss/ot� dimers,

Heff
�ss,7c��0� =

1

16
J�3r1 − r2�T� i · T� j −

1

24
J�r3 − r2�T� i � T� j

−
1

192
J�27r1 + 13r2 + 2r3� , �4.12�

which in the �→0 limit gives

Heff
�ss,7c��0� =

1

8
J�T� i · T� j −

7

4
 . �4.13�

These results have clear implications for the nearest-
neighbor correlations in an extended system. By inspection,
systems composed of either type of dimer would favor AF
�spin� and AO interdimer bonds, to the extent allowed by
frustration, and “linear” �type-�7a�� bonds over “semilinear”
�type-�7b�� bonds over “nonlinear” �type-�7c�� bond types in
Fig. 7, to the extent allowed by geometry. Discussion of this
type of state requires in principle the consideration of all
possible dimer coverings, but will be restricted here to a
small number of periodic arrays which illustrate much of the
essential physics of extended dimer systems within this
model.

We begin by considering the periodic covering of Fig.
8�a�, a fully linear conformation �of ground-state degeneracy
12� whose interdimer bond types �Table I� maximize the pos-
sible number of bonds of type �7a�. The counterpoint shown
in Fig. 8�b� consists of pairs of dimer bonds with alternating
orientations in two of the three lattice directions and consti-
tutes the simplest configuration minimizing �to zero� the
number of type-�7a� interdimer bonds. The coverings in Figs.
8�c� and 8�d� have the same property. These configurations
exemplify a quite general result, that any dimer covering in
which there are no linear configurations �type �7a�� of any
pair of dimers will have 1/3 type-�7b� bonds, and thus the
remaining 1/2 of the bonds must be of type �7c�. The cover-
ings shown in Figs. 8�a� and 8�b�–8�d� represent the limiting
cases on numbers of each type of bond in that any random
dimer covering will have values between these. Indeed, it is
straightforward to argue that, during changes in position of
any set of dimers within a covering, the creation of any two
bonds of type �7b� will destroy one of type �7a� and one of
type �7c�, and conversely.

Having established this effective sum rule, we turn next to
the energies of the dimer configurations. First, for both types
of dimer ��os/st� and �ss/ot��, all states with equal numbers of
each bond type are degenerate, subject to equal solutions of
the frustration problem. Next, if frustration is neglected, it is
clear from Eqs. �4.2�–�4.4�, �4.7�–�4.9�, and �4.11�–�4.13�
that the AF and AO energy values for the three bond types

�obtained by substituting − 1
4 for S� i ·S� j and T� i ·T� j� are, respec-

tively, − 1
2J, − 3

8J, and − 1
4J, which, when taken together with

the sum rule, suggest a very large degeneracy of dimer cov-
ering energies.

Returning to the question of frustration, a covering of
minimal energy is one which both minimizes the number of
FM or FO bonds and ensures that they fall on bonds of type
�7c�; both criteria are equally important. For the dimer cov-
ering �8a�, with maximal aligned bonds, it is possible by
using the spin �for �os/st� dimers� or orbital �for �ss/ot�

TABLE I. Occurrence probabilities for bonds of each type for
four simple periodic dimer coverings of the triangular lattice.

Configuration Dimer Bond �7a� Bond �7b� Bond �7c�

Figure 8�a� 1/6 1/6 0 2/3

Figure 8�b� 1/6 0 1/3 1/2

Figure 8�c� 1/6 0 1/3 1/2

Figure 8�d� 1/6 0 1/3 1/2

(b)

(a)

(c)

(d)

FIG. 8. �Color online� Periodic dimer coverings on the triangu-
lar lattice, each representative of a class of coverings: �a� linear, �b�
plaquette, �c� 12-site unit cell, and �d� “zigzag.”
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dimers� configuration represented by the arrows in Fig. 9�a�
to make the number of frustrated �FM/FO� interdimer bonds
equal to 1/6 of the total. Bearing in mind that the 1/6 bonds
covered by dimers are also FM/FO and that at least 1/3 of
bonds on the triangular lattice must be frustrated for collinear
spins, this number is an absolute minimum. �Here we do not
consider the possibility of noncollinear order of the nons-
inglet degree of freedom.� Further, for this configuration one
observes that all of the FM/FO bonds already fall on bonds
of type �7c�, providing an optimal case with energy

Edim�0� = − J�1

6
+

1

6
·

1

2
+

1

2
·

1

4
+

1

6
·

3

16
 = −

13

32
J

�4.14�

at �=0. This value constitutes a basic bound which demon-
strates that a simple, static dimer covering has lower energy
than any long-range-ordered spin or orbital state discussed in
Sec. III in this limit ��=0� of the model.

It remains to establish the degeneracy of the ground-state
manifold of such coverings, and we provide only a qualita-
tive discussion using further examples. If alternate four-site
�dimer pair� clusters in Fig. 8�a� are rotated to give the cov-
ering of Fig. 8�b�, the minimal frustration is spoiled: by anal-
ogy with Fig. 9, it is easy to show that if only 1/6 of the
bonds are to be frustrated, then they are of type �7b�, and
otherwise 1/3 of the bonds are frustrated if all are to be of
type �7c�. On the periodic 12-site cluster �Fig. 8�c��, one may
place three four-site clusters in each of the possible orienta-
tions, which as above removes all bonds of type �7a� and
maximizes those of type �7b�. Within this cluster it is pos-
sible to have only four frustrated interdimer bonds out of 18,

while between the clusters there is again an arrangement of
the spin or orbital arrows �cf. Fig. 9� with only six FM or FO
bonds out of 24, for a net total of 1/6 frustrated interdimer
bonds, of which half are of type �7b�. The covering of Fig.
8�d� represents an extension of the procedure of enlarging
unit cells and removing four-site plaquettes, which demon-
strates that it remains possible in the limit of no type-�7a�
bonds to reduce frustration to 1/6 of the bonds, and to bonds
of type �7c� �Fig. 9�b��, whence the energy of the covering is
again Edim�0�=− 13

32J �Eq. �4.14��. Thus it is safe to conclude
that, for the static-dimer problem, the ground-state manifold
for �=0 consists of a significant number of degenerate cov-
erings. We do not pursue these considerations further be-
cause of degeneracy lifting by dimer resonance processes
and because the energetic differences between static dimer
configurations are likely to be dwarfed by the contributions
from dimer resonance, the topic to which we turn in Sec. V.

B. Direct-exchange model

The very strong preference for bond spin singlets �the
factor of 4 in Eq. �2.21�� suggests that dimer states will also
be competitive in this limit even though only 1/6 of the
bonds may redeem an energy of −J. Following the consider-
ations and terminology of Sec. IV A, we note �i� that

�S� i ·S� j	=0 on interdimer bonds and �ii� that in this case, in-
terdimer bonds have energies − 1

4J at �=0 for types �7a� and
�7b� and 0 for type �7c�. Because any state with a maximal
number �1/6� of type-�7a� bonds must have only bonds of
type �7c� for the other 2/3 �states �8a��, such a state is mani-
festly less favorable at �=1 than those of types �8b�–�8d�,
where there are no aligned pairs of dimers. In this latter case,
the full calculation gives

Edim�1� = −
1

144
J�9r1 + 19r2 + 8r3� �4.15�

and Edim�1�=− 1
4J for �=0. This energy does now exceed

that available from the formation of Heisenberg spin chains
in one of the three lattice directions �Sec. III C�, which gave
the value E1D AF�1�=−0.231J.

At the level of these calculations, the manifold of degen-
erate states with this energy is very large, and its counting is
a problem which will not be undertaken here. We will show
in Sec. V that, precisely in this limit, no dimer resonance
processes occur and the static dimer coverings do already
constitute a basis for the description of the ground state. The
question of fluctuations leading to the selection of a particu-
lar linear combination of these states which is of lowest en-
ergy, i.e., of a type of order-by-disorder mechanism, is ad-
dressed in Ref. 53.

At finite values of the Hund exchange, this type of state
will come into competition with the simple avoided-blocking
states which gain, with a FM spin state, an energy

EFM�1� = −
1

6
Jr1, �4.16�

as 2/3 of the bonds contribute with an energy of − 1
4Jr1. The

critical value of � required to drive the transition from the

(b)

(a)

FIG. 9. �Color online� Spin or orbital configurations �black ar-
rows� within �a� linear and �b� zigzag orbital- or spin-singlet dimer
coverings of the triangular lattice. The number of frustrated inter-
dimer bonds is reduced to 1/6 of the total and all are of type �7c�.
This figure emphasizes that for the spin-orbital model, dimer singlet
formation does not exhaust the available degrees of freedom.
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low-spin dimerized state to the FM state is found to be

�c = 0.1589. �4.17�

C. Mixed model

Because both of the end points, �=0 and �=1, favor
dimerized states over states of long-ranged order, it is natural
to expect that a dimer state will provide a lower energy also
at �=0.5. However, we remind the reader that there are no
intermediate dimer bases and caution that there is no strong
reason to expect one or other of the limiting dimer states to
be favored close to �=0.5. By inspection, the energy of an
��0 state can be obtained by direct addition of the diagonal
interdimer bond contributions in an �ss/ot� or �os/st� dimer
state, which is established by pure off-diagonal hopping, be-
cause no site occupancies arise which allow mixed pro-
cesses. For the same reason, no interdimer terms impede a
calculation of the energy of an �	1 state by summing the
off-diagonal interdimer bond contributions in a spin-singlet
dimer state stabilized by purely diagonal processes. We will
not analyze the static-dimer solutions for the intermediate
regime in great detail, and provide only a crude estimate of
the �=0.5 energy by averaging over both results at the limits
of their applicability. We will make no attempt here to ex-
clude other forms of disordered state at �=0.5, and return to
this question in Sec. V.

For each type of bond it is straightforward to compute the
energy gained from interdimer hopping processes of the type
not constituting the dimer state, and the results are shown in
Table II. The first four lines give the energies per bond from
diagonal-hopping processes occurring on the bonds of the
different �=0 dimer states and conversely for the final two
lines. It is clear that the occupations of type-�7a� bonds pre-
clude any hopping of the opposite type. For �=0 dimer con-
figurations, the interdimer diagonal hopping on �7b� bonds is
always of avoided-blocking type, while on �7c� bonds a
blocking can occur and like the other terms is evaluated us-

ing �S� i ·S� j	. For �=1, off-diagonal hopping on the interdimer

bonds is evaluated with �S� i ·S� j	=0 between the spin singlets:
all processes on �7b� bonds are those for one active orbital;
complications arise only for �7c� bonds, where an interdimer
bond between parallel dimers has two active AO orbitals,

while one between dimers which are not parallel has two
active FO orbitals.

At �=0.5, the energy of an �os/st� or �ss/ot� dimer state
augmented by diagonal-hopping processes is minimized by
states �8a� and �8d�: the interdimer bond contributions of all
coverings in Fig. 8 are equal, despite the different type
counts, so only the �=0 energy is decisive. At �=0,

E0
�8a��0.5� = −

1

2
�13

32
+

2

3
·

1

4
J = −

55

192
J , �4.18�

E0
�8d��0.5� = −

1

2
�13

32
+

1

3
·

1

8
+

1

2
·

1

4
J = −

55

192
J .

�4.19�

The energy of a spin-singlet dimer state augmented by off-
diagonal hopping is minimal in states �8b� and, curiously,
�8a�: although the latter has explicitly a worse ground-state
energy than the other states shown, the effect of the addi-
tional hopping is strong, not least because all interdimer
type-�8c� bonds are between parallel dimers. Thus at �=0,

Ed
�8a��0.5� = −

1

2
� 5

24
+

1

2
·

2

3
J = −

13

48
J ,

Ed
�8b��0.5� = −

1

2
�1

4
+

1

3
·

1

4
+

1

2
·

2

3
·

1

2
+

1

2
·

1

3
·

1

4
J = −

13

48
J .

�4.20�

Despite the fact that these are two completely different ex-
pansions, it is worth noting that the two sets of numbers are
rather similar, which occurs because the significantly inferior
energy of the �=1 ground state is compensated by the sig-
nificantly greater interdimer bond energies available from
off-diagonal-hopping processes. However, this result also
implies that no special combinations of diagonal and off-
diagonal dimers can be expected to yield additional inter-
dimer energies beyond this value.

Taking covering �8a� as representative of the lowest avail-
able energy, but bearing in mind that many other states lie
very close to this value, an average over the two approaches
yields

Edim
�8a��0.5� = −

107

384
J �4.21�

at �=0. This number is no longer lower than the value ob-
tained in Sec. III D for fully ordered states gaining energy
from mixed processes, raising the possibility that nondimer-
based phases may be competitive in the intermediate regime,
where neither of the limiting types of dimer state alone is
expected to be particularly suitable. However, we will not
investigate this question more systematically here, and cau-
tion that the approximations made both in Sec. III D and here
make it difficult to draw a definitive conclusion.

D. Summary

The results of this section make it clear that static-dimer
states, while showing the same energetic trend, are consider-

TABLE II. Additional interdimer bond energies �in units of J� at
�=0.5 due to �i� diagonal hopping occurring in a state �designated
by �=0� stabilized by off-diagonal processes and �ii� off-diagonal
hopping in a state ��=1� stabilized by diagonal processes.

Bond �7a� �7b� �7c�

�=0 �os/st�, AF 0 − 1
16�r1+r2� − 1

8 �r1+r2�
�=0 �os/st�, FM 0 − 1

8r1 − 1
4r1

�=0 �ss/ot�, AO 0 − 1
32�3r1+r2� − 1

16�3r1+r2�
�=0 �ss/ot�, FO 0 − 1

32�3r1+r2� − 1
16�3r1+r2�

�=1, 
 dimers 0 − 1
16�3r1+r2� − 1

8 �3r1+r2�
�=1, non-
 dimers 0 − 1

16�3r1+r2� − 1
12�2r2+r3�
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ably more favorable than any long-range-ordered states �Sec.
III� over most of the phase diagram. As a function of �, the
dimer energy increases monotonically from − 13

32J to − 1
4J, and

both end-point values also lie below the results obtained for
quasi-1D spin-disordered states in Sec. III. We stress that the
results of this section are provisional in the sense that we
have not performed a systematic exploration of all possible
dimer coverings but rather have focused on a small number
of examples illustrative of the limiting cases in terms of in-
terdimer bond types. More importantly, we have considered
only static dimer coverings with effective interdimer interac-
tions: the kinetic-energy contributions due to dimer reso-
nance processes for all values of �	1 are missing in this
type of calculation. For this reason, we have also refrained
from investigating higher-order processes, which may select
particular dimer states from a manifold of static coverings
degenerate at the level of the current considerations. Gaining
some insight into the magnitude and effects of resonance
contributions is the subject of Sec. V.

V. EXACT DIAGONALIZATION

A. Clusters and correlation functions

In this section we present results obtained for small sys-
tems by full ED. Because each site has two spin and three
orbital states, the dimension of the Hilbert space increases
with cluster size as 6N, where N is the number of sites. As a
consequence, we focus here only on systems with N=2, 3,
and 4 sites: all three clusters can be considered as two-,
three-, or four-site segments of an extended triangular lattice
connected with periodic boundary conditions. For the single
bond and triangle this only alters the bond energies by a
factor of 2, a rescaling not performed here, but for the four-
site system it is easy to see that the intercluster bonds ensure
that the system connectivity is tetrahedral. We will also com-
pare some of the single-bond and tetrahedron results with
those for a four-site chain. Other accessible cluster sizes �N
=5 and 6� yield awkward shapes which disguise the intrinsic
system properties. Indeed we will emphasize throughout this
section those features of our very small clusters which can be
taken to be generic and those which are shape-specific.

Given the clear tendency to dimerization illustrated in
Secs. III and IV, it is to be expected that spin-correlation
lengths in all regimes of � are very small. To the extent that
the behavior of the model for any parameter set is driven by
local physics, the cluster results should be highly instructive
for such trends as dimer formation, relative roles of diagonal
and off-diagonal hopping, dimer resonance processes, lifting
of degeneracies both in the orbital sector and between states
of �os/st� and �ss/ot� dimers, and the importance of joint spin-
orbital correlations. However, generic features of extended
systems which cannot be accessed in small clusters are those
concerning questions of high system degeneracy and subtle
selection effects favoring specific states.

We will compute and discuss the cluster energies, degen-
eracies, site occupations, bond hopping probabilities in diag-
onal and off-diagonal channels �discussed in Sec. V C�, and
the spin, orbital, and spin-orbital �four-operator� correlation
functions. All of these quantities will be calculated for rep-

resentative values of � and � covering the full phase dia-
gram, and each contains important information of direct rel-
evance to the local physics properties listed in the previous
paragraph. Although the systems we study are perforce rather
small, we will show that one may recognize in them a num-
ber of general trends valid also in the thermodynamic limit.
Indeed we will find in Secs. V C and V D �should be the
triangle and tetrahedron� strong reinforcement for the dimer
ansatz of Sec. IV, and the ED results enable us to investigate
in a rigorous manner the driving forces toward resonance
between VB states in different parameter regimes of the
model �2.7�.

We introduce here the three correlation functions, which
for a bond �ij	 oriented along axis � are given by

Sij �
1

d
�

n

�n�S� i · S� j�n	 , �5.1�

Tij �
1

d
�

n

�n�T� i� · T� j��n	 , �5.2�

Cij �
1

d
�

n

�n��S� i · S� j��T� i� · T� j���n	

−
1

d2�
n

�n�S� i · S� j�n	�
m

�m�T� i� · T� j��m	 , �5.3�

where d is the degeneracy of the ground state. The defini-
tions of the spin �Sij� and orbital �Tij� correlation functions
are standard, and we have included explicitly all of the quan-
tum states ��n	� which belong to the ground-state manifold.
The correlation function Cij �Eq. �5.3�� contains information
about spin-orbital entanglement, as defined in Sec. I: it rep-
resents the difference between the average over the complete
spin-orbital operators and the product of the averages over
the spin and orbital parts taken separately. It is formulated in
such a way that Cij =0 means that the mean-field decoupling
of spin and orbital operators on every bond is exact, and both
subsystems may be treated independently from each other.
Such exact factorizability is found9 in the high-spin states at
large �; its breaking, and hence the need to handle coupled
spin and orbital correlations in a significantly more sophisti-
cated manner, is what is meant by entanglement in this con-
text.

B. Single bond

We consider first a single bond oriented along the c axis
�Fig. 10�. In the superexchange limit the active orbitals are a
and b, while for direct exchange only the c orbitals contrib-
ute in Eq. �2.7�. As discussed in Sec. IV A, a single bond
gives energy −J in the superexchange model ��=0� �Fig.
10�a��, where the ground state has degeneracy d=6 at �=0,
from the two triply degenerate wave functions �ss/ot� and
�os/st�. At finite �, the latter is favored as it permits a greater
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energy gain from excitations to the lowest triplet state in the
d2 configuration �Eqs. �2.15� and �2.16��.

Although orbital fluctuations which appear in the mixed
exchange terms in Eq. �2.22� may in principle contribute at
��0, one finds that the wave function remains precisely that
for �=0, i.e., �ss/ot� degenerate with �os/st�, all the way to
�=0.5. Thus for the parameter choice specified in Sec. II, the
ground-state energy increases to a maximum of E0=−0.5J
here �Fig. 10�a��. The degeneracy d=6 is retained throughout
�the regime �	0.5, and only at �=0.5 does the level-
crossing cause the degeneracy to increase to d=7. For the
entire regime �� �0.5,1�, the ground state is a static orbital
configuration with c orbitals occupied at both sites to support
the spin singlet and d=1. The evolution of the spectrum with
� demonstrates not only that superexchange and direct ex-
change are physically distinct, unable to contribute at the
same time, but that the two limiting wave functions are ex-
tremely robust, their stability quenching all mixed fluctua-
tions for a single bond. In this situation it is not the ground-
state energy but the higher first excitation energy which
reveals the additional quantum mechanical degrees of free-
dom active at �=0 compared to �=1 �Fig. 10�a��.

The spin, orbital, and composite spin-orbital correlation
functions defined in Eqs. �5.1�–�5.3� give more insight into
the nature of the single-bond correlations. The degeneracy of
wave functions �ss/ot� and �os/st� for 0��	0.5 leads to
equal spin and orbital correlation functions, as shown in Fig.

10�b�, and averaging over the different states gives Sij =Tij

=− 1
4 . As a singlet for one quantity is matched by a triplet for

the other, the two sectors are strongly correlated, and indeed
Cij =− 1

4 , indicating an entangled ground state. However, a
considerably more detailed analysis is possible. Each of the
six individual states ��n	� within the ground manifold has the

expectation value �n��S� i ·S� j��T� i� ·T� j���n	=− 3
16, which we as-

sert is the minimum possible when the spin and pseudospin
are the quantum numbers of only two electrons. It is clear
that if the operator in Cij is evaluated for any one of these
states alone, the result is zero. Entanglement arises math-
ematically because of the product of averages in the second
term of Eq. �5.3� and physically because the ground state is a
resonant superposition of a number of degenerate states. We
emphasize that the resulting value, Cij =− 1

4 , is the minimum
obtainable in this type of model, reflecting the maximum
possible entanglement. We will show in Sec. V E that this
value is also reproduced for the Hamiltonian of �2.7� on a
linear four-site cluster, whose geometry ensures that the sys-
tem is at the SU�4� point of the 1D SU�2� � SU�2� model.9

By contrast, for ��0.5 those states favored by superex-
change become excited, and the spin-singlet ground state has
Sij =− 3

4 . The orbital configuration is characterized by
�nicnjc	=1, a rigid order which quenches all orbital fluctua-

tions �indeed, the orbital pseudospin variables T� i� are zero�.
Thus the spin and orbital parts are trivially decoupled, giving
Cij =0. Finally, at the transition point �=0.5, averaging over
the 7 degenerate states yields Sij �−0.32, Tij �−0.21, and
Cij �−0.23. In summary, the very strong tendency to dimer
formation in the two limits �=0 and �=1 precludes any
contribution from mixed terms on a single bond, leading to a
very simple interpretation of the ground-state properties for
all parameters.

C. Triangular cluster

We turn next to the triangle, which has one bond in each
of the lattice directions a, b, and c. Unlike the case of the
single bond, here the spin-orbital interactions are strongly
frustrated in a manner deeper than and qualitatively different
from the Heisenberg spin Hamiltonian. Not only can interac-
tions on all three bonds not be satisfied at the same time but
also the actual form of these interactions changes as a func-
tion of the occupied orbitals. The triangle is sufficient to
prove �numerically and analytically� the inequivalence in
general of the original model and the model after local trans-
formation for frustration reasons discussed in Sec. II B.

We begin with the observation that the results to follow
are interpreted most directly in terms of resonant dimer states
on the triangle. This fact is potentially surprising, given that
the number of sites is odd and dimer formation must always
exclude one of them, but emphasizes the strong tendencies to
dimer formation in all parameter regimes of the model. For
their interpretation we use a VB ansatz where it is assumed
that one bond is occupied by an optimal dimer state, mini-
mizing its energy, and the final state of the system is deter-
mined by the contributions of the other two bonds. This an-
satz is perforce only static,le and breaks the symmetry at a
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FIG. 10. �Color online� Evolution of the properties of a single
bond ��c as a function of � at �=0: �a� energy spectrum �solid
lines� with degeneracies as shown; �b� spin �Sij, filled circles�, or-
bital �Tij, empty circles�, and spin-orbital �Cij , �� correlations:
Sij =Tij =Cij =−0.25 for �	0.5, while Tij =Cij =0 for ��0.5. The
ground-state energy E0 is −J for both the superexchange ��=0� and
direct-exchange ��=1� limits, and its increase between these is a
result of the scaling convention. The transition between the two
regimes occurs by a level crossing at �=0.5. For �	0.5, the two
types of dimer wave function ��ss/ot� and �os/st�� are degenerate
�d=6� for resonating orbital configurations �ab�, while at ��0.5,
the nondegenerate spin singlet is supported by occupation of c or-
bitals at both sites ��ss/cc��.
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crude level, but enables one to understand clearly the effects
of the resonance processes captured by the numerical studies
in restoring symmetries and lowering the total energy.

Considering first the VB ansatz for the superexchange
model, the energy −J may be gained only on a single bond in
one of two ways. For the bond, spin state to be a singlet �S
=0, �ss/ot� wave function�, two different active orbitals are
occupied at both sites in one of the orbital triplet states. The
other two bonds lower the total energy when the third site
has an electron of the third orbital color, each gaining an
energy of −0.25J due to the orbital interactions in Eq. �2.8�.
The energy of the triangle is then EVB�0�=−0.5J per bond,
and the cluster has a low-spin �S= 1

2 � ground state with de-
generacy d=6 from the combination of the orbital triplet and
the spin state of the third electron. We stress that the location
�a, b, or c bond� of the spin singlet does not contribute to the
degeneracy because the three VB states are mixed within the
ground state by the contributing off-dimer hopping pro-
cesses. The same considerations applied to an �os/st� dimer
on one of the bonds of the triangle shows that there is no
color and spin state of the third electron which allows both
nondimer bonds to gain the energy −0.25J simultaneously, so
the cluster has a higher energy of − 5

12J per bond. Thus the
VB ansatz illustrates a lifting of the degeneracy between the
two types of singlet state, the physical origin of which lies in
the permitted off-dimer fluctuation processes, and this will
be borne out in the calculations below. However, the net spin
state of the cluster has little effect on the estimated energy of
the �os/st� case, and its high-spin version �S= 3

2 � will be a
strong candidate for the ground state at higher values of �. In
the direct-exchange limit ��=1�, the VB ansatz for spin sin-
glets again returns an energy EVB�1�=− 5

12J also because only
one nondimer bond can contribute. Here the off-dimer pro-
cesses are restricted to the third electron, which has arbitrary
color and spin, and cannot mix the three VB states, whence
the degeneracy is d=12.

With this framework in mind, we turn to a description of
the numerical calculations at all values of �, beginning with
the most important results; at �=0 the degeneracy is d=6,
and hence VB resonance is confirmed, yielding an energy
very much lower than the static estimate, at E0=−0.75J per
bond �Fig. 11�a��. Thus strong orbital dynamics and posi-
tional resonance effects operate in the ground-state manifold.
These break the �ss/ot�/�os/st� symmetry but act to restore
other symmetries broken in the VB ansatz. At �=1, the en-
ergy and degeneracy from the VB ansatz are exact, showing
that the orbital sector is classical and introduces no reso-
nance effects.

Figure 11�a� shows the complete spectrum of the triangu-
lar cluster for all ratios of superexchange to direct exchange
and in the absence of Hund coupling. Frustration of spin-
orbital interactions is manifest in rather dense energy spectra
away from the symmetric points and in a ground-state energy
per bond significantly higher than the minimal value −J. At
�=0 the spectrum is rather broad, with a significant number
of states of relatively low degeneracy due to the strong fluc-
tuations and consequent mixing of VB states in this regime.
However, even in this case the ground state is well separated
from the first-excited state. As emphasized above, the

ground-state energy, E0�0�=−0.75J, is quite remarkable,
demonstrating a very strong energy gain from dimer reso-
nance processes. By contrast, the value E0�1�=− 5

12J per bond
found at �=1 is exactly equal to that deduced from the VB
ansatz, demonstrating that this wave function is exact. Here
the excited states have high degeneracies, mostly of orbital
origin, and thus the spectrum shows wide gaps between these
manifolds of states; this effect is more clearly visible in Fig.
12�c�. The degeneracies shown in Fig. 11�a� are discussed
below. In the intermediate regime, many of the degeneracies
at the end points are lifted, leading to a very dense spectrum.
The two transitions at �=0.32 and �=0.69 appear as clear
level crossings: the intermediate ground state is a highly ex-
cited state in both of the limits ��=0,1�, reinforcing the
physical picture of a very different type of wave function
dominated by orbital fluctuations and, as we discuss next,
with little overt dimer character.

The correlation functions for any one bond of the triangle
are shown in Fig. 11�a�. That Sij is constant for all � can be
understood in the dimer ansatz by averaging over the three
configurations with one �ss/ot� or �ss� bond and one “decou-
pled” spin on the third site, which gives Sij =− 1

4 everywhere.
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FIG. 11. �Color online� �a� Energy spectrum per bond for a
triangular cluster as a function of � for �=0. Ground-state degen-
eracies are as indicated, with d=6 at �=0 and d=12 at �=1. The
arrows mark two transitions in the nature of the �low-spin� ground
state, which are further characterized in panels �b� and �c�. �b� Spin
�Sij, filled circles�, orbital �Tij, empty circles�, and spin-orbital
�Cij , �� correlation functions on the c bond. �c� Average electron
densities in the t2g orbitals at site 1 �Figs. 2�b� and 2�c��, showing
n1b �solid line� and n1a=n1c �dashed�. The orbital labels are shown
for a c bond. All three panels show clearly a superexchange regime
for �	0.32, a direct-exchange regime for ��0.69, and an inter-
mediate regime �0.32	�	0.69�. A full description is presented in
the text.
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The orbital and spin-orbital correlation functions show a
continuous evolution accompanied by discontinuous changes
at two transitions, where the nature of the ground state is
altered. The orbital correlation function Tij =− 1

12 at �=0 may
be understood as an average over the orbital triplet �+ 1

4 � and
the two nondimer bonds �each − 1

4 �. When � increases, this
value is weakened by orbital fluctuations and undergoes a
transition at �=0.32 to a regime where orbital fluctuations
dominate, and Tij is close to zero. Above �=0.69, Tij be-
comes positive and approaches + 1

12 as �→1, indicating that
the wave function changes to the static-dimer limit. While T� ic
vanishes on the c bond here, the cluster average has a finite
value due to the contribution Tij =

1
4 from the active nons-

inglet bond.
The spin-orbital correlation function Cij also marks

clearly the three different regimes of �. When �	0.32, Cij
has a significant negative value �Fig. 11�b�� whose primary
contributions are given by the four-operator component

��S� i ·S� j��T� i� ·T� j��	. By contrast, Cij is close to zero in the
intermediate regime, increasing again to positive values for
��0.69. For all ��0.32, Cij can be shown to be dominated
by the term −SijTij in Eq. �5.3�, while the four-operator con-
tribution is small and vanishes as �→1. Thus entanglement,
defined as the lack of factorizability of the spin and orbital
sectors, can be finite even for vanishing joint spin-orbital
dynamics.

Further valuable information is contained in the orbital
occupancies at individual sites �Fig. 11�b��, which show
clearly the three different regimes. Although there is always
on average one electron of each orbital color on the cluster,
these are not equally distributed, as each site participates
only in two bonds and the symmetry is broken. A represen-
tative site �labeled 1 in Figs. 2�b� and 2�c�� has only a and c
bonds, and hence the electron density in the b orbital is ex-
pected to differ from the other two. The values nb=2 /3 and
na=nc=1 /6 found in the regime �	0.32 are understood
readily as following from a 1/3 average occupation of �ab�
and �bc� orbital triplet states on the c and a bonds, respec-
tively, and of an �ac� orbital triplet state on the b bond,
which ensures that the electron at site 1 is in orbital b �Fig.
2�b��. By contrast, in the regime ��0.69, only the two static
orbital configurations �cc� and �bb� on the c and b bonds
contribute, and na=nc= 1

2 , while nb=0; when the system is in
the third possible spin-singlet state, with a �bb� orbital state
on the b bond, the third electron is either a or c. Between
these two regimes �0.32	�	0.69� is an extended phase
with equal average occupancy of all three orbitals at each
site, a potentially surprising result given the broken site sym-
metry of the cluster. While this may be interpreted as a res-
toration of the symmetry of the orbital sector by strong or-
bital fluctuations, including those due to terms in Hm �Eq.
�2.22��, it does not imply a higher symmetry of the strongly
frustrated interactions at �=0.5.

The spectra as a function of Hund coupling � are shown
in Fig. 12 for the �=0 and �=1 limits, and at �=0.5 to
represent the intermediate regime. The lifting of degenera-
cies as a function of � is a generic feature. States of higher
spin are identifiable by their stronger dependence on �, and
in all three panels a transition is visible from a low-spin to a
high-spin state. At �=0 �Fig. 12�a��, the large low-� gap to
the next excited-state results in the transition occurring at the
rather high value of �c=0.158. This can be taken as a further
indication of the exceptional stability of the resonance-
stabilized ground state in the low-spin sector. The degen-
eracy d=12 of the high-spin state is discussed below.

The transition to the high-spin state at �=1 also occurs at
a high critical value, �c=0.169 �Fig. 12�a��, due in this case
quite simply to the lack of competition for the strong singlet
states on individual bonds. Only in the intermediate regime,
0.32	�	0.69, where we have shown already that the or-
bital state is quite different from that in either limit �Fig. 11�,
is the transition to the high-spin state much more sensitive to
�. The orbital fluctuations in this phase occur both in the
low-spin and the high-spin channels, making these very simi-
lar in energy, and the transition occurs for �=0.5 at only
�c=0.033 �Fig. 12�b��. As expected from the �=0 limit,
where fluctuations are also strong, the characteristic features
of this energy spectrum are low degeneracy and a semicon-
tinuous nature. The location of the high-spin transition as a
function of � may be used to draw a phase diagram for the
triangular cluster, which has the rather symmetric form
shown in Fig. 13.

Yet more information complementary to that in the energy
spectra and correlation functions can be obtained by consid-
ering the average “occupation correlations” for a bond
�ij	 
�,
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FIG. 12. �Color online� Energy spectra for a triangular cluster as
a function of Hund exchange �. Energies are quoted per bond and
shown for �a� �=0, �b� �=0.5, and �c� �=1. The arrows indicate
transitions at �c from the low-spin �S=1 /2� to the high-spin
�S=3 /2� ground state. The numbers in all panels give degeneracies
for the two lowest states for �	�c and ���c, respectively.
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P = �ni�nj�	 , �5.4�

Q = �ni��1 − nj��	 + ��1 − ni��nj�	 , �5.5�

R = ��1 − ni���1 − nj��	 . �5.6�

These probabilities �P+Q+R=1� reflect directly the nature
of the resonance processes contributing to the energy of the
cluster states in that they show the relative importance of
diagonal and off-diagonal hopping in the ground states, and
the evolution of these contributions with � and �. We do not
present these quantities in detail here, but only summarize
the overall picture of the ground state whose understanding
they help elucidate.

For this summary we return to the VB framework, which
accounts for many of the basic properties illustrated in the
numerical results presented above. Considering first the low-
spin states ��=0�, at �=0 the ground state is given by one
�ss/ot� dimer resonating around the three bonds of the clus-
ter; the third site has the third color, its hopping gives a large
value of Q=1 /3 �R=2 /3 from the pure superexchange chan-
nel� and its spin an addition twofold degeneracy �d=3�2
=6�; the orbital occupation of the �ss/ot� dimer is responsible
for the net 1/6:1/6:2/3 occupation distribution. When ��0
the state remains essentially one with a resonating spin sin-
glet, large Q, and dominant R, but the orbital triplet degen-
eracy is lifted to 2+1 and the ground-state degeneracy to d
=2�2. All quantities, including P, Q, and R, undergo dis-
continuous changes at ��0.32, and in this regime there is no
longer strong evidence for an interpretation in terms of reso-
nating spin singlets: large Q�2 /3 and the equal site occu-
pations suggest the dominance of mixed hopping processes
which are not consistent with either mechanism of singlet
formation. The retention of fourfold degeneracy across this
transition is largely accidental and stems from twofold spin
and orbital contributions. Only for ��0.69 is a spin-singlet
description once again valid: here P becomes significant, as
the resonating singlet is stabilized by diagonal hopping
where the orbital has the bond color. The third site now has
one of two possible colors, its hopping keeps Q large, and its
spin yields another twofold degeneracy, as do the orbital
states, whence the net degeneracy is d=2�2�2. Only at

�=1 does the spin singlet become static, while the third site
still has either of the other colors, yielding the symmetric
result P=1 /9, Q=R=4 /9, and degeneracy d=12.

A similar description is possible in the high-spin states at
���c. At �=0 the �os/st� dimer is rendered static by the fact
that hopping to the third site is now excluded if it has the
third color, and so instead this site takes one of the singlet
colors, a twofold degree of freedom which, however, does
not allow singlet motion; as a consequence the orbital occu-
pation is uniform �1/3:1/3:1/3�, the hopping processes in-
clude contributions in the diagonal channel �P=1 /6, Q
=1 /3, R=1 /2� and the degeneracy is d=3�4=12. For �
�0 the orbital singlet may again resonate, but the third site
retains one of the singlet colors, orbital degeneracy is bro-
ken, and d=4. Once again strong mixed processes dominate
the intermediate regime in which the spin state is not an
important determining factor. Above �=0.69 the critical
value �c required to overcome spin-singlet formation be-
comes large again, and the high-spin state is one where
avoided-blocking processes �large Q� dominate, while bro-
ken orbital degeneracy keeps d=4. Finally, at �=1 one ob-
tains a pure avoided-blocking state with orbital configura-
tions acb or cba for the sites �1, 2, 3� of Fig. 2�c�, and
consequent degeneracy d=4�2=8. Thus it is clear that the
high-� region is also one yielding interesting orbital models
with nontrivial ground states, some including orbital-singlet
states.

D. Tetrahedral cluster

As in the case of the triangular lattice, interpretation of
the numerical results for the tetrahedral cluster �four-site
plaquette of the triangular lattice� is aided by consideration
of the VB ansatz in the two limits of superexchange and
direct-exchange interactions. The tetrahedral cluster can ac-
commodate exactly two dimers, with all interdimer bonds of
type �7c�, and may thus be expected to favor dimer-based
states by simple geometry. However, because the consider-
ations and comparisons of this section are given only for this
single cluster type, any bias of this sort would not invalidate
the results and trends discussed here.

Because of the different forms and symmetries of the spin
and orbital sectors, there is no possibility of elementary spin-
orbital operators or of a ground-state wave function which is
a net singlet of a higher symmetry group. The state with two
orbital singlets on one pair of bonds, two spin singlets on a
second pair, and pure interdimer bonds on the third pair does
exist but is not competitive: the energy cost for removing the
orbital singlets from the spin state maximizing their energy is
by no means compensated by the energy gain from having
two spin-singlet bonds in an orbital state which also does not
maximize their energy. This result may be taken as a further
indication for the stability of dimers only in the forms �os/st�
or �ss/ot� in this model, and states of shared orbital and spin
singlets are not considered further here. We return to this
point in Sec. V E in the context of the four-site chain.

We discuss only the energies of the VB wave functions at

�=0. The minimal value obtainable for �S� i ·S� j	 and for

�T� i� ·T� j�	 on the interdimer bonds is −1 /4, corresponding to
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FIG. 13. �Color online� Phase diagram of the triangular cluster
in the plane �� ,��. The spin states below and above the transition
line �c��� are, respectively, spin doublet �S=1 /2� and spin quartet
�S=3 /2�.
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the AF/AO order. Thus at �=0 the energy per bond is

Eos/st�0� = Ess/ot�0� = −
1

2
J , �5.7�

with the degeneracy of the �ss/ot� and �os/st� wave functions
restored as for the single bond. In the limit of direct ex-
change, the VB wave function consists of spin singlets with
two active orbitals of the bond. The geometry of the cluster
precludes these orbitals from being active on any of the in-
terdimer bonds, as a result of which the energy per bond at
�=0 is

E�1� = −
1

3
J �5.8�

and the ground state has degeneracy d=3.
The most important results for the tetrahedron, which

we discuss in detail in the remainder of the section, are
the following. At �=0, the exact ground-state energy is
E0=−0.5833J: while not as large as in the case of the triangle
�Sec. V C�, the resonance energy contribution is very signifi-
cant also for an even number of cluster sites. The degeneracy
of the numerical ground state, d=6, has its origin in only one
of the �ss/ot� or �os/st� wave functions �below�, demonstrat-
ing again that there is no sense in which the quantum fluc-
tuations in the spin and orbital sectors are symmetrical, and
that the VB ansatz is capturing the essence of the local phys-
ics only at a very crude level. At �=1, as also for the trian-
gular cluster, the numerical results confirm not only the en-
ergy given by the VB ansatz but every detail �degeneracies,
occupations, and correlations� of this state.

We begin the systematic presentation of results by dis-
cussing the energy spectra at �=0 �Fig. 14�a��. As soon as
the degeneracies of the superexchange limit ��=0� are bro-
ken, the spectrum becomes very dense and remains so across
almost the complete phase diagram until a level-crossing at
�c=0.92. The ground-state energy for all intermediate values
of � interpolates smoothly toward the transition, showing an
initial decrease not observed in the triangle: for the tetrahe-
dron, mixed hopping terms make a significant contribution,
leading to an overall energy minimum around �=0.15. The
dominance of these terms is indicated by both the extremely
high value of �c and the steepness of the low-� curve where
the transition to the static VB phase is finally reached.

The bond correlation functions shown in Fig. 14�b� illus-
trate the effects of corrections to the VB ansatz. The spin
correlations always have the constant value Sij =− 1

4 , which is
the most important indication of the breaking of symmetry
between �ss/ot� and �os/st� sectors at low �: this value is an
average over the spin-singlet result −3 /4 �on two bonds� and
four bonds with value 0, and thus it is clear that �ss/ot�
dimers afford more resonance energy. However, the proxim-
ity of �os/st� states suggests that a low value of �c, the criti-
cal Hund coupling for the transition to the high-spin state, is
to be expected �below�.

The orbital correlations average to zero at �=0, a non-
trivial result whose origin lies in the breaking of ninefold
degeneracy within the orbital sector, and remain close to this
value until the transition at �c. It is worth noting here that

Tij =0 implies a higher frustration in the orbital sector than
would be obtained in the spin sector for an �os/st� state �Sij

=− 1
12�, which is due to the complex direction dependence of

the orbital degrees of freedom. This phase is maintained
across much of the phase diagram, with only small changes
to the correlation functions, the negative value of Tij reflect-
ing an easing of orbital frustration. The lack of a phase tran-
sition throughout the region in which mixed processes are
also important suggests that a dimer-based schematic picture
of the ground state remains appropriate for the four-site sys-
tem, with only quantitative evolution as a function of � until
�c=0.92. At �=1, the result Tij =− 1

6 is the consequence of
c-orbital operators on the interdimer a and b bonds.

Significant spin-orbital correlations, Cij �−0.1 at �=0
�Fig. 14�b��, are found to be due exclusively to the four-
operator term at low �. While these negative contributions
drop steadily through most of the regime �	�c, signifying a
gradual decoupling of orbitals and spins as the static limit
��=1� is approached, near �c the negative value of Cij is
again enhanced by the contribution −SijTij due to the inter-
dimer bonds. Thus, as for the triangle �Sec. V C�, the en-
tanglement is finite, complete factorization is not possible,
and a finite value Cij =− 1

24 is found even at �=1. We note
here that on the tetrahedron there is little information in the
orbital occupations, which are constant �n�= 1

3 � over the en-
tire phase diagram, demonstrating only the symmetry of this
cluster geometry, and are therefore not shown.

The spectra as a function of Hund coupling � are shown
for the three parameter choices �=0, 0.5, and 1 in Fig. 15.
Once again, the spectra become very dense away from �
=0. At �=0 �Fig. 15�a�� high-spin states are found also in the
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FIG. 14. �Color online� �a� Energy spectrum per bond for a
tetrahedral cluster as a function of � for �=0. Ground-state degen-
eracies are as indicated, with d=6 at �=0 and d=150 at �=1. The
arrow marks a transition in the nature of the �low-spin� ground
state. �b� Spin �Sij, filled circles�, orbital �Tij, empty circles�, and
spin-orbital �Cij , �� correlation functions on the c bond of the
tetrahedral cluster as functions of � for �=0.
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low-energy sector, as a consequence of the near-degeneracy
of �ss/ot� and �os/st� states, and the high-spin transition oc-
curs at a very low value of �c �Fig. 15�a��. The direct-
exchange limit is both qualitatively and quantitatively differ-
ent, because the quantum fluctuations and the corresponding
energy gains are limited to the spin sector, making the low-
spin states considerably more stable and giving �c=0.175
�Fig. 15�c��. The spin excitation gap decreases gradually with
increasing �, but until just below �c, for all values of �, the
spin excitation is to S=1 states. However, these triplet states
are never the ground state in the entire regime of �, a single
transition always occurring directly into an S=2 state. In the
intermediate regime represented by �=0.5, the energy spec-
trum is so dense that individual states are difficult to follow
�a more systematic analysis of the spectra in different sub-
spaces of Sz is not presented here�. The high-spin transition
occurs at the relatively high value �c=0.136 due mainly to
the large energy gains in the low-spin sector from mixed
exchange. Further evidence for the importance of the orbital
excitations in Hm �Eq. �2.22�� can be found in the broadening
of the spectrum which leads to the occurrence of quantum
states with weakly positive energies: for both superexchange
and direct-exchange processes, the Hamiltonians are con-
structed as products of projection operators with negative
coefficients, so positive energies are excluded.

The low- to high-spin transition points at all values of �
can be collected to give the full phase diagram of the tetra-

hedron shown in Fig. 16. As shown above, in the superex-
change limit the high-spin state lies very close to the low-
spin ground state, and the transition to an S=2 spin quintet
occurs at �c=0.017. We comment here that this high-spin
state is in no sense classical or trivial, being based on orbital
singlets which are stabilized by strong orbital fluctuations,
and emphasize again that the high-spin sector also contains a
manifold of rich problems in orbital physics, which we will
not consider further here. The near degeneracy of �ss/ot� and
�os/st� states is further lifted in the presence of the mixed
terms in Hm, raising �c to values on the order of 0.12 across
the bulk of the phase diagram. For no choice of parameters is
a spin triplet state found at intermediate values of �. The
reentrant behavior close to �=0.5 is an indication of the
importance of mixed terms in stabilizing a low-spin state, the
tetrahedral geometry providing one of the few examples we
have found of anything other than a direct competition, and
hence an interpolation between the two limiting cases. The
rapid upturn in the limit of �→1 reflects the anomalous
stability of the static VB states in the direct-exchange limit.
The very strong asymmetry of the transition line in Fig. 16
contrasts sharply with the near-symmetry about �=0.5 ob-
served for the triangle �Fig. 13�, and shows directly the dif-
ferences between those features of the phase diagram which
are universal and those which are effects of even or odd
cluster sizes in a dimer-based system.

We close our discussion of the tetrahedral cluster with a
brief discussion of degeneracies and summary of the picture
provided by the VB ansatz with additional resonance. For the
orbital occupation correlations and degeneracies, we begin
with the low-spin sector ��=0�. At �=0 one has two �ss/ot�
VBs resonating around the six bonds of the cluster, a state
characterized by P=1 /6, Q=1 /3, and R=1 /2; however, a
mixing of the orbital triplet states lowers the degeneracy
from 9 to d=6. For ��0 the state is the same, with slow
evolution of P	1 /6, Q�1 /2, and R�1 /3, but now mixed
hopping terms break all orbital degeneracies, giving d=1.
Only when ��0.92 is the ground state more accurately char-
acterized as one based on spin singlets of the bond color,
with significant values of P and the restoration of an orbital
degeneracy d=2. As �→1, the diagonal-hopping component

FIG. 15. �Color online� Energy spectra for a tetrahedral cluster
as a function of Hund exchange �. Energies are quoted per bond
and shown for �a� �=0, �b� �=0.5, and �c� �=1. The arrows indi-
cate transitions from the low-spin �S=0� to the high-spin �S=2�
ground state.
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FIG. 16. �Color online� Phase diagram of the tetrahedral cluster
in the plane �� ,��. As for the triangular cluster, the spin states
below and above the line �c��� are, respectively, singlet �S=0� and
quintet �S=2�, with no intermediate triplet phase.

BRUCE NORMAND AND ANDRZEJ M. OLEŚ PHYSICAL REVIEW B 78, 094427 �2008�

094427-28



is strengthened �P→1 /3� as the pair of bond-colored spin
singlets resonates, until at �=1 they become static and the
degeneracy is d=3.

For the high-spin states in the regime ���c, at �=0 one
has two resonating �os/st� VBs, with the hopping channels
unchanged and only the spin degeneracy d=5. This state is
not altered qualitatively for any �	0.92, a transition value
independent of �. For 0.92	�	1, orbital correlations are
strongly suppressed and the state is characterized by hopping
processes largely of the avoided-blocking type �one active
orbital, Q dominant�, still with d=5. Finally, �=1 represents
the limit of a pure avoided-blocking state �P=0, Q
=2 /3, R=1 /3�, where the degeneracy jumps to 150, a num-
ber which can be understood as 5�spin degeneracy� ��6�No.
of two-color states with no bonds requiring spin
singlets��24 �No. of three-color states with no bonds requir-
ing spin singlets��.

E. Four-site chain

As a fourth and final case, we present results from a linear
four-site cluster. While not directly relevant to the study of
the triangular lattice, this system offers further valuable in-
sight into the intrinsic physics of the spin-orbital model. The
cluster is oriented along the c axis with periodic boundary
conditions. As for the single bond �Sec. V B�, only the a and
b orbitals contribute at �=0, where indeed one finds average
electron densities per site nia=nib= 1

2 and nic=0. Likewise, at
�=1 only the c orbitals are occupied, with nic=1, a result
dictated by the spin-singlet correlations, which are fully de-
veloped only for complete orbital occupation.

The energy per bond for the four-site chain in the super-
exchange limit is again −J as for a single bond �Fig. 17�a��:
somewhat surprisingly, the bonds do not “disturb” each
other, and joint spin-orbital fluctuations extend over the en-
tire chain. However, in contrast to a single bond, this behav-
ior is due to only one quantum state, the SU�4� singlet. In
this geometry, only one SU�2� orbital subsector is selected,
and the resulting SU�2� � SU�2� system is located precisely
at the SU�4� point of the Hamiltonian.54 Thus, exactly as in
the SU�4� chain, all spin, orbital, and spin-orbital correlation
functions are equal, Sij =Tij =Cij =−0.25, as shown in Fig.
17�b�. For Sij and Tij, this result may be understood as an
average over equal probabilities of singlet and triplet states
on each bond. In more detail, the condition set on the corre-

lation functions by SU�4� symmetry12 is 4
3 ��S� i ·S� j��T� ic ·T� jc�	

=Sij =Tij, an equality also obeyed by the single bond �Sec.
V B�. The product of Sij and Tij in its definition ensures the
identity for Cij. The unique ground state is nevertheless a
linear superposition of states expressed in the spin and or-
bital bases, and has not only finite but maximal entangle-
ment. This state persists, with a perfectly linear
�-dependence, all the way to �=1, but ceases to be the
ground state at �= 4

7 �Fig. 17�a��, where there is a level-
crossing with the �=1 ground state �also perfectly linear�.
This latter state has a completely different, fluctuation-free
orbital configuration, with pure c-orbital occupation at every
site, and gains energy solely in the direct-exchange channel.
The spins and orbitals are decoupled, Tij and Cij vanish, and

the spin state has Sij =−0.50: this result can be understood as

an equal average over bond states with S� i ·S� j =− 3
4 and − 1

4 and
matches that obtained for the four-site AF Heisenberg model
with a RVB ground state.2 The energy at �=1, E0=−0.75J
�Fig. 17�a��, is given directly by including the constant term,
− 1

4J per bond, in the definition of the Hamiltonian �Eq.
�2.21��.

The results for the linear four-site cluster demonstrate
again the competition between superexchange and direct ex-
change. The orbital fluctuations arising due to the mixed ex-
change term, Hm �Eq. �2.22��, are responsible for removing
the high degeneracies of the eigenenergies in the limits �
=0 and �=1 �Fig. 17�a��. In fact, the spectrum of the excited
states is quasicontinuous in the regime around �=0.5 but has
a finite spin and orbital gap everywhere other than the quan-
tum critical point at �= 4

7 .
These chain results raise a further possibility for the spon-

taneous formation at �=0 of a 1D state not discussed in Sec.
III. A set of, for example, c-axis chains, with only a and b
orbitals occupied in the pseudospin sector, would create ex-
actly the 1D SU�4� model and would therefore redeem an
energy E=− 3

4J per bond from the formation of linear four-
site spin-orbital singlets. The energy of the triangular lattice
would receive a further constant contribution from the cross-
chain bonds, which was calculated in Eq. �3.9� for general �,
and hence would be given at �=0 by
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FIG. 17. �Color online� Evolution of the properties of the four-
site chain as a function of � at �=0: �a� energy spectrum and �b�
spin �Sij, filled circles�, orbital �Tij, empty circles�, and spin-orbital
�Cij , �� correlation functions. Both panels show a transition oc-
curring at a level crossing at �=4 /7. In panel �a�, the labels show a
nondegenerate ground state �d=1� in both regimes, which has
prediminantly spin-singlet character at ��0.571, but both spin and
orbital-singlet components at �	0.571. In panel �b�, Sij =Tij =Cij

=− 1
4 for �	0.571 due to a resonating �ab� orbital configuration,

while Tij =Cij =0 for ��0.571 as a consequence of the static c
orbital configuration.
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4
J −

1

6
J = −

5

12
J . �5.9�

This energy represents a new minimum compared to all of
the results in Sec. III. That it was obtained from a melting of
both spin and orbital order confirms the conclusion that or-
dered phases are inherently unstable in this class of model,
being unable to provide sufficient energy to compete with the
kinetic-energy gains available through resonance processes.
That its value is now lower than that obtained for a static, 2D
dimer covering �Sec. IV� is not of any quantitative signifi-
cance, given the results of Sec. V confirming the importance
of the positional resonance of dimers.

F. Summary

To summarize, we have shown in this section the results
of exact numerical diagonalization calculations performed on
small clusters. Detailed analysis of ground-state energies, de-
generacies, site occupancies, and a number of correlation
functions can be used to extract valuable information about
the local physics of the model across the full regime of pa-
rameters. Essentially all of the quantities considered show
strong local correlations and the dominance of quantum fluc-
tuations of the shortest range, with ready explanations in
terms of resonating dimer states.

We draw particular attention to the extremely low ground-
state energy of the triangular cluster, which shows large
gains from dimer resonance. The tetrahedral cluster also has
a very significant resonance contribution, although more of
its ground-state energy is captured at the level of a static-
dimer model. Such a VB ansatz provides the essential frame-
work for the understanding of all the results obtained even
for systems with odd-site numbers. The energies and their
evolution with � contain some quantitative contrasts between
even- and odd-site systems, allowing further insight concern-
ing the range over which the qualitative features of the clus-
ter results extend.

Focusing in detail upon these energies, Fig. 18 summa-
rizes the exact diagonalization results at zero Hund coupling
and provides a comparison not only with the VB ansatz but
also with all of the other results obtained in Secs. III–V.
From bottom to top are shown the exact cluster energies
including all physical processes, the cluster VB ansatz,
showing the importance of dimer resonance energy, the static
VB ansatz for extended systems, suggesting by comparison
with clusters the effects of resonance, the energies of
“melted” states with 1D spin �and orbital� correlations, and
the optimal energy of states with full, long-ranged spin and
orbital order.

Returning to the cluster results, their degeneracies can be
understood precisely and demonstrate the restoration of vari-
ous symmetries due to resonance processes. We provide a
complete explanation for all the correlation functions com-
puted and use these to quantify the entanglement as a func-
tion of �, �, and the system size. There is a high-spin tran-
sition as a function of � for all values of �, which sets the
basic phase diagram and establishes a new set of disen-
tangled orbital models at high �.

The extrapolation of the cluster results to states of ex-
tended systems, some approximations for which are shown
in Fig. 18, is not straightforward, and cannot be expected to
include any information relevant to subtle selection effects
within highly degenerate manifolds of states. However, with
the exception of the static-dimer regime around �=1, our
calculations suggest that nothing subtle is happening in this
model over the bulk of the phase diagram, where the physics
is driven by large energetic contributions from strong, local
resonance processes.

VI. RHOMBIC, HONEYCOMB, AND KAGOME LATTICES

In Sec. I we alluded to the question of different sources of
frustration in complex systems such as the spin-orbital model
of Eq. �2.7�. More specifically, this refers to the relative ef-
fects of pure geometrical frustration, as understood for AF
spin interactions, and of interaction frustration of the type
which can arise in spin-orbital models even on bipartite
lattices.7 Because the interaction frustration depends in a
complex manner on system geometry, no simple separation
of these contributions exists. In this section we alter the lat-
tice geometry to obtain some qualitative results with a bear-
ing on this separation by considering the same spin-orbital
model on the three simple lattice geometries which can be
obtained from the triangular lattice by the removal of active
bonds or sites.

The geometries we discuss are rhombic, obtained by re-
moving all bonds in one of the three triangular lattice direc-
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FIG. 18. �Color online� Ground-state energy per bond as a func-
tion of �, obtained with �=0 for a triangular cluster with three
bonds �blue, dashed line�, and a tetrahedral cluster with six bonds
�red, solid line�. For comparison, the energies obtained from the VB
ansatz in the limiting cases �=0 and �=1 are shown for the trian-
gular cluster �blue, diamonds� and tetrahedral cluster �red, yellow-
filled, open circles�; at �=0 both VB energies are the same, while at
�=1 they match the exact solutions. Green, upward-pointing tri-
angles show the static-dimer results of Sec. IV for the extended
system and the black, dot-dashed line the lowest energy per bond
obtained for fully spin and orbitally ordered phases in Sec. III. The
violet, downward-pointing triangle shows the energy of the orbitally
ordered but spin-disordered Heisenberg-chain state at �=0 �Eq.
�3.9�� and the open, yellow-filled square that of the analogous state
at �=1 �Eq. �3.22��, while the cross shows the energy of the spin-
and orbitally disordered SU�4�-chain state �Eq. �5.9��.
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tions �Fig. 19�a��, honeycomb, or hexagonal, obtained by
removing every third lattice site �Fig. 19�b��, and kagome,
obtained by removing every fourth lattice site in a 2�2 pat-
tern �Fig. 19�c��. Simple geometrical frustration is removed
in the rhombic and honeycomb cases, but for Heisenberg
spin interactions the kagome geometry is generally recog-
nized �from the ground-state degeneracy of both classical
and quantum problems� to be even more frustrated than the
triangular lattice. We consider only the �=0 and �=1 limits
of the model and �=0. We discuss the results for long-range-
ordered states �Sec. III� and for static dimer states �Sec. IV�
for all three lattice geometries. Here we do not enter into
numerical calculations on small clusters and comment only
on those systems for which exact diagonalization may be
expected to yield valuable information not accessible by ana-
lytical considerations.

A. Rhombic lattice

While the connectivity of this geometry is precisely that
of the square lattice, we refer to it here as rhombic to em-
phasize the importance of the bond angles of the chemical
structure in maintaining the degeneracy of the t2g orbitals and

in determining the nature of the exchange interactions. It is
worth noting that the spin-orbital model �2.7� on this lattice
may be realized in Sr2VO4 �below�. In the absence of geo-
metrical frustration, the spin problem created by imposing
any fixed orbital configuration selected from Sec. III �Figs. 3
and 4� is generally rather easy to solve. Further, at �=0 both
FM and AF, and by extension AFF, spin states, have equal
energies, leading to a high spin degeneracy.

Following Sec. III, the �=0 energies for the majority of
the orbitally ordered states of Fig. 3 are

Elro
rh �0� = −

1

2
J �6.1�

per bond at �=0 for a number of possible spin configura-
tions, whose degeneracy is lifted �in favor of FM lines or
planes� at finite �. Indeed, the only exceptions to this rule
occur for the three-color state �Fig. 3�d�� and for orientations
of the other states which preclude hopping in one of the two
lattice directions, whose triangular symmetry properties are
broken by the missing bond. As noted in Sec. III, for super-
positions is it the exception rather than the rule for all hop-
ping processes to be maximized, but on the rhombic lattice
this is possible for the states in Fig. 4�a� and some orienta-
tions of those in Figs. 4�d� and 4�e�.

For �=1, the energy limit even on the triangular lattice
was set rather by the number of active bonds than by the
problem of minimizing their frustration. Similar to the �=0
case, all states where the active hopping direction is one of
the two lattice directions, plus in this case state �3d�, can
redeem the maximum energy available,

Elro
rh �1� = −

1

4
J �6.2�

at �=0, which is simply the avoided-blocking energy, for a
large number of possible spin configurations. Finite Hund
exchange favors FM spin states.

Turning to dimerized states, the calculation of the energy
of any given dimer covering proceeds as in Sec. IV, namely,
by counting for each the respective numbers of bonds of
types �7a�–�7c� �Fig. 7�. For the rhombic lattice, lack of geo-
metrical frustration means that all interdimer bonds can be
chosen to be AF/AO. The two most regular dimer coverings
of the rhombic lattice with small unit cells may be desig-
nated as “columnar” �Fig. 20�a�� and “plaquette” �Fig.
20�b��. In both cases, 1/4 of the bonds are the dimers and by
inspection 1/4 of the interdimer bonds in the columnar state
are of type �7a�, while the remainder are �7c�; by contrast,
the plaquette state has no type-�7a� bonds, 1/2 type-�7b�
bonds, and the remainder are of type �7c�. For �=0, the
energies are

Edc
rh�0� = −

1

4
J −

1

4
·

1

2
J −

1

2
·

1

4
J = −

1

2
J ,

Edp
rh �0� = −

1

4
J −

1

2
·

3

8
J −

1

4
·

1

4
J = −

1

2
J �6.3�

at �=0, both for �ss/ot� and for �os/st� dimers. The degen-
eracy of these two limiting cases, in the sense of maximal

(b)

(a)

(c)

FIG. 19. �Color online� �a� Rhombic lattice, showing a two-
color orbitally ordered state. �b� Honeycomb lattice, showing a one-
color orbitally ordered state. �c� Kagome lattice, showing a three-
color orbitally ordered state.
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and minimal numbers of type-�7a� and -�7b� bonds, suggests
a degeneracy of all dimer coverings at this level of analytical
sophistication. Further, all of these dimer coverings are de-
generate with all of the unfrustrated ordered states at �=0.
The selection of a true ground state from this large manifold
of static states �order by disorder� would hinge on higher-
order processes, but these considerations are likely to be ren-
dered irrelevant by dimer resonance �Sec. V�.

For the spin-singlet dimer states at �=1 one finds

Edc
rh�1� = −

1

4
J −

1

4
·

1

4
J −

1

2
· 0J = −

5

16
J ,

Edp
rh �1� = −

1

4
J −

1

2
·

1

4
J −

1

4
· 0J = −

3

8
J �6.4�

at �=0 and thus that, as for the triangular lattice, the energy
is minimized by dimer configurations excluding linear inter-
dimer bonds. This remains a large manifold of dimer cover-
ings, whose energy is manifestly lower than any of the pos-
sible orbitally ordered states in this limit of the model and
within which order by disorder is expected to operate �Sec.
V�.53

The considerations of this section, extended to finite val-
ues of �, may be relevant in the understanding of experimen-
tal results for Sr2VO4. These suggest weak FM order55 ac-
companied by an AO order56 which could be interpreted as
arising from the formation of dimer pairs. When the oxygen
octahedra distort, the threefold degeneracy of the t2g orbitals
is lifted to give a model containing only two degenerate or-
bitals, dyz and dxz. This leads to a situation with Ising-type
superexchange interactions and quasi-1D hole propagation in
an effective t-J model.57

B. Honeycomb lattice

The situation for the honeycomb lattice is very similar to
that for the rhombic case. Again the absence of geometrical

frustration makes it possible to obtain the minimal energy for
a number of orbital orderings, with a high-spin degeneracy at
�=0. For pure superexchange interactions, once again

Elro
h �0� = −

1

2
J �6.5�

per bond, while in the direct-exchange limit,

Elro
h �1� = −

1

4
J , �6.6�

both at �=0, for the same physical reasons as above. For
dimer states on the honeycomb lattice all interdimer bonds
are by definition of type �7c�, and again can be made AF/AO
because frustration is absent, so the energies of all dimer
coverings are de facto identical. By way of demonstration,
the two simplest regular configurations, which we label “co-
lumnar” and “three way,” are shown in Fig. 21, and, from the
fact that now 1/3 of the bonds contain dimers, their energies
are

Edc
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·
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J = −
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Ed3
h �0� = −

1

3
J −

2

3
·

1

4
J = −

1

2
J �6.7�

per bond at �=0=�. Thus static dimer states are again de-
generate with unfrustrated ordered states in the superex-
change limit, and detailed consideration of kinetic processes
would be required to deduce the lowest total energy. In this
context, the dimer coverings shown in Fig. 21 exemplify two
limits about which little kinetic energy can be gained from
resonance �Fig. 21�a�, where large numbers of dimers must
be involved in any given process� and in which kinetic-
energy gains from processes involving short loops �the three

(b)

(a)

FIG. 20. �Color online� Rhombic lattice with �a� columnar and
�b� plaquette dimer coverings.

(b)

(a)

FIG. 21. �Color online� Honeycomb lattice with �a� columnar
and �b� three-way dimer coverings.
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dimers around 2/3 of the hexagons, Fig. 21�b�� are maxi-
mized.

At �=1, only the dimer energy is redeemed, and this on
1/3 of the bonds, so

Ed
h�1� = −

1

3
J �6.8�

at �=0 for a large manifold of coverings. This energy is once
again significantly better than any of the possible ordered
states, a result which can be ascribed to the low connectivity.
That the ground state of the extended system in this limit for
both the rhombic and honeycomb lattices involves a selec-
tion from a large number of nearly degenerate states suggests
that numerical calculations on small clusters would not be
helpful in resolving detailed questions about its nature. The
same model for the honeycomb geometry in the �=1 limit
has been discussed for the S=1 compound Li2RuO3,58 where
the authors invoked the lattice coupling, in the form of a
structural dimerization driven by the formation of spin sin-
glets, to select the true ground state.

C. Kagome lattice

The kagome lattice occupies something of a special place
among frustrated spin systems1 as one of the most highly
degenerate and intractable problems in existence, for both
classical and quantum spins, and even with only nearest-
neighbor Heisenberg interactions. Interest in this geometry
has been maintained by the discovery of a number of
kagome spin systems and has risen sharply with the
recent synthesis of a true S=1 /2 kagome material,
ZnCu3�OH�6Cl2.59 Preliminary local-probe experiments60,61

show a state of no magnetic order and no apparent spin gap,
whose low-energy spin excitations have been interpreted62 as
evidence for an exotic spin-liquid phase. Both experimen-
tally and theoretically, kagome systems of higher spins
�S=3 /2 and 5/2� are found to have flat bands of magnetic
excitations, reflecting the very high degeneracy of the spin
sector.63 While no kagome materials are yet known with both
spin and orbital degrees of freedom, Maekawa and
co-workers44,48 have considered the itinerant electron system
on the triangular lattice for �=0 �actually for the motion of
holes in NaxCoO2�, demonstrating that the combination of
orbital, hopping selection, and geometry leads to any one
hole being excluded from every fourth site and thus moving
on a system of four interpenetrating kagome lattices.

Considering first the energies per bond for states of long-
ranged spin and orbital order, in a number of cases the values
for the kagome lattice are identical to those of the triangular
lattice. This is easy to show by inspection for the one-color
state �3a�, and for the superposition states �4a�–�4c�, where
bonds of all types are removed in equal number. However,
for the less symmetrical orbital color configurations a more
detailed analysis of the type performed in Sec. III is required
and yields provocative results. The two simple possibilities
for ordered two-color states with a single color per site are
shown in Fig. 22 and differ only in the orientation of the
continuous lines �the majority color� relative to the active
orbitals. These can be considered as the kagome-lattice ana-

logs of states �3b� and �3c�, as well as of �3e� and �3f�.
When the lines of c orbitals are aligned with the c axis

�Fig. 22�a��, this direction is inactive at �=0 and only the
other two directions contribute, one with two active FO or-
bitals, mandating an AF spin state to give energy − 1

2J per
bond, and the other with energy − 1

4J and no strong spin
preference, whence

E�k3b��0� = −
1

4
J �6.9�

at �=0 for sets of unfrustrated AF chains. By contrast, when
the lines of c orbitals fall along the b direction �Fig. 22�b��,
the �=0 problem contains one FO and one AO line each
with two active orbitals, and one line with one active orbital.
Only the first requires AF spin alignment, while the other
two lines are not frustrating, with the result that an energy

E�k3c��0� = −
5

12
J �6.10�

can be obtained. This value is lower than that on the trian-
gular lattice, showing that for the class of models under con-
sideration, where not all hopping channels are active in all
directions, a system of lower connectivity can lead to frus-
tration relief even when its geometry remains purely that of
connected triangles.

With this result in mind, we consider again the possibili-
ties offered by different three-color states, specifically those
shown in Fig. 23. With reference to the superexchange prob-
lem, the state in Fig. 19�c�, which by analogy with �3d� we
denote as �k3d�, contains only a small number of remnant
triangles and isolated bonds still with two active orbitals.
However, the state �k3d1�, shown in Fig. 23�a�, is that which
ensures that no such bonds remain and every single bond of
the lattice has one active superexchange channel. The state

(b)

(a)

FIG. 22. �Color online� Kagome lattice with unequally weighted
two-color states oriented �a� with and �b� against the lattice direc-
tion corresponding to the majority orbital color.
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�k3d2� in Fig. 23�b� is that in which every single bond of the
lattice has two active �FO� superexchange channels: this pos-
sibility can be realized for the kagome geometry at the cost
of creating a frustrated magnetic problem requiring a 120°
spin state to minimize the energy,

E�k3d��0� = −
5

16
J , �6.11�

E�k3d1��0� = −
1

4
J , �6.12�

E�k3d2��0� = −
3

8
J . �6.13�

Thus one finds that lower energies than the value − 1
3J per

bond, which was the lower bound for fully �orbitally and
spin-� ordered states on the triangular lattice, are again pos-
sible for three-color ordered states. However, the residual
spin frustration means that the lowest ordered-state energy
on the kagome lattice is given by the unfrustrated, two-color
AFF state, E�k3c��0�=− 5

12J.
We present briefly the energies of the same states at �

=1, where only a maximum of one hopping channel per
bond can be active, and as noted above this is generally a
stricter energetic limit than any frustration constraints. The
results at �=0 are

E�k3b��1� = −
1

4
J �6.14�

for an AFF state gaining most of its energy from the c-axis
chains and

E�k3c��1� = −
1

12
J �6.15�

due to the dearth of active orbitals in this orientation. Simi-
larly, by counting active orbitals in the three-color states,

E�k3d��1� = −
1

6
J , �6.16�

E�k3d1��1� = −
1

4
J , �6.17�

E�k3d2��1� = 0, �6.18�

and it is the state of Fig. 23�a� which achieves the unfrus-
trated value − 1

4J by permitting one active hopping channel
on every bond of the kagome lattice.

We will not discuss the orbital superposition states which
are the analogs of �4d� and �4e�, noting only that these
present again two different possibilities on the kagome lat-
tice, depending on the orientation of the majority lines. Even
with the frustration relief offered by this geometry for the
type of model under consideration, superposition states con-
tain too many hopping channels for all to be satisfied simul-
taneously, and it is not possible to equal the energy values
found, respectively, for the configurations in Figs. 23�a� and
23�b� at �=1 and �=0.

It remains to consider dimer states on the kagome lattice,
as these have been of equal or lower energy for every case
analyzed so far. The set of nearest-neighbor dimer coverings
of the kagome lattice is large, and for the S=1 /2 Heisenberg
model in this geometry the spin-singlet manifold has been
proposed as the basis for a RVB description.25 Two dimer
coverings degenerate at the level of the current treatment are
shown in Fig. 24.

Dimer coverings of the kagome lattice have the property
that 3/4 of the triangles contain one dimer. In this case, the
other bonds of the triangle are interdimer bonds, one of
which is of type �7b� while the other is of type �7c�. The
other 1/4 of the triangles, known64 as “defect triangles,” have
no dimers, and their three bonds are either all of type �7b�,
with probability 1/4, or one each of types �7a�–�7c�, with
probability 3/4. The frustration of the system is contained in
the problem of minimizing the number of FM/FO interdimer
bonds; this exercise is complex and no solution is known, so
only an upper bound will be estimated here.

The bonds of a defect triangle connect three different
dimers, and so one �or all three� must be FM/FO. A hexagon
of the kagome lattice with no dimers on its bonds is sur-
rounded by six nondefective triangles, one with one dimer by
one defective neighbor, with two dimers two, and a hexagon
with three dimers shares its nondimer bonds with three de-
fect triangles. Hexagons with odd dimer numbers must create
a FM/FO bond between at least one pair of dimers, and it is

(b)

(a)

FIG. 23. �Color online� Kagome lattice with two different
equally weighted three-color states: �a� two-color lines oriented
such that only one superexchange channel, plus the direct-exchange
channel, is active on every bond; �b� two-color lines oriented such
that all superexchange channels are active but no direct-exchange
channels.
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reasonable to place this bond on the defect triangle�s� where
an energy cost is already incurred. We note immediately that
the cost of reversing the type-�7a� bond, 1

4J �Sec. IV A�,
exceeds that of reversing both interdimer bonds of a nonde-
fective triangle, which is 1

8J+ 1
16J. As a consequence, we take

this cost, which is equal to that of reversing both a nonde-
fective triangle and the weakest bond of the defect triangle,
to be an upper bound on the effect of frustration. The net
energy of a dimer state for �=0=� is then estimated to be
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This is a very low number for the kagome lattice, even lying
below the value − 1

2J per bond �which, however, is of no
special significance here�. Thus we find that dimer states in
this type of model are strongly favored, gaining a very much
higher energy than even the best ordered states. Qualita-
tively, the dimer energy shares with the ordered-state energy
the feature that it is considerably better than anything obtain-
able for the triangular lattice. This implies that the reduced
connectivity of the lattice geometry for a model where the
orbital degeneracy provides a number of mutually exclusive
hopping channels makes it easier to find states where every
remaining bond can support a favorable hopping process
without strong frustration.

Applying all of the above geometrical considerations to
the direct-exchange model ��=1�, where there is no frustra-
tion problem between the spin singlets, one finds
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at �=0. Once again this energy is significantly lower than
the value Edim�1�=− 1

4J obtained for the triangular lattice in
Eq. �4.15�, demonstrating that the multichannel spin-orbital
model of the type considered here is less frustrated in the
kagome geometry.

We comment in closing that the dimer energies we have
estimated are only those of static VB configurations and,
away from �=1, the possibility remains of a significant reso-
nance energy gain from quantum fluctuations between these
states �cf. Sec. V�. Numerical calculations on small clusters
of sufficient size �here at least six sites for a unit cell� would
be helpful in this frustrated case.

To summarize this section, the spin-orbital model on bi-
partite lattices appears to present competing ordered and
dimerized states with the prospect of high degeneracies.
Among “frustrated” systems �in the sense of being nonbipar-
tite�, the kagome lattice provides an example where geo-
metrical and orbital frustration effects cancel partially, af-
fording favorable dimerized solutions. Thus, while it is
possible to ascribe some of the frustration effects we have
studied in the triangular lattice to a purely geometrical ori-
gin, for more complex models it is in general necessary to
extend the concept of “geometrical frustration” beyond that
applicable to pure spin systems.

VII. DISCUSSION AND SUMMARY

We have considered a spin-orbital model representative of
a strongly interacting 3d1 electron system with the cubic
structural symmetry of edge-sharing metal-oxygen octahe-
dra, conditions which lead to a triangular lattice of magnetic
interactions between sites with unbroken threefold orbital de-
generacy. We have elucidated the qualitative phase diagram,
which turns out to be very rich, in the physical parameter
space presented by the ratio ��� of superexchange to direct-
exchange interactions and the Hund exchange ���.

Despite the strong changes in the fundamental nature of
the model Hamiltonian as a function of � and �, a number of
generic features persist throughout the phase diagram. With
the exception of the ferromagnetic phases at high �, which
effectively suppresses quantum spin fluctuations �below�,
there is no long-ranged magnetic or orbital order anywhere
within the entire parameter regime. This shows a profound
degree of frustration whose origin lies both in the geometry
and in the properties of the spin-orbital coupling; a qualita-
tive evaluation of these respective contributions is discussed
below.

All of the phases of the model show a strong preference
for the formation of dimers. This can be demonstrated in a
simple static VB ansatz and is reinforced by the results of

(b)

(a)

FIG. 24. �Color online� ��a� and �b�� Kagome lattice with two
different dimer coverings. In both examples, only 2 of the 12 tri-
angles shown explicitly on the cluster are “defective” �contain no
dimer�, but the reader may notice that many of the next 12 triangles
adjoining the boundary must also be so.
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numerical calculations. The static ansatz is already an exact
description of the direct-exchange limit, �=1, and gives the
best analytic framework for understanding the properties of
much of the remainder of the phase diagram. The most strik-
ing single numerical result is the prevalence of VB states
even on a triangular cluster, and the underlying feature rein-
forced by all of the calculations is the very large additional
“kinetic” contribution to the ground-state energy arising
from the resonance of VBs due to quantum fluctuations. It is
this resonance which drives symmetry restoration in some or
all of the spin, orbital, and translational sectors over large
regions of the parameter space. The sole exception to dimer-
ization is found at high � and around �=1, where the only
mechanism for virtual hopping is the adoption of orbital con-
figurations which permit one orbital to be active �avoided
blocking�.

The “most exotic” region of the phase diagram is that at
small � and �, and this we have assigned tentatively as an
orbital liquid. In this regime, quantum fluctuations are at
their strongest and most symmetrical, and every indication
obtained from energetic considerations of extended systems,
as well as from microscopic calculations of a range of local
quantities on small clusters, suggests a highly resonant,
symmetry-restored phase. While this orbital liquid is in all
probability �again from the same indicators� based on reso-
nating dimers, an issue we discuss in full below, we cannot
exclude fully the possibility of a type of one-dimensional
physics: short, fluctuating segments of frustration-decoupled
spin or orbital chains, whose character persists despite the
high site coordination. It should be stressed here that the
point �� ,��= �0,0� is not in any sense a parent phase for
exotic states in the rest of the phase diagram: mixed and
direct-exchange processes are qualitatively different ele-
ments, which introduce different classes of frustrated model
at finite �. While the matter is somewhat semantic, we com-
ment only that one cannot argue for the point �=0.5 being
“more exotic” than �=0 despite having the maximal number
of equally weighted hopping channels, because it does not
possess any additional symmetries which mandate qualita-
tive changes to the general picture. In this sense, the limit
�=1 serves as a valuable fixed point which is understood
completely and yet is still dominated by the purely quantum
mechanical concept of singlet formation.

One indicator which can be employed to quantify “how
exotic” a phase may be is the entanglement of spin and or-
bital degrees of freedom. We define entanglement as the de-
viation of the spin and orbital sectors from the factorized
limit in which their fluctuations can be treated separately. We
compute a spin-orbital correlation function and use it to mea-
sure entanglement, finding that this is significant over the
whole phase diagram. Qualitatively, entanglement is maxi-
mal around the superexchange limit, which is dominated by
dimers where singlet formation forces the other sector to
adopt a local triplet state. However, for particular clusters
and dimer configurations, the high symmetry may allow less
entangled possibilities to intervene exactly at �=0. The
direct-exchange limit, �=1, provides additional insight into
the entanglement definition: the four-operator spin-orbital
correlation function vanishes, reflecting the clear decoupling
of the two sets of degrees of freedom at this point, but the

finite product of separate spin and orbital correlation func-
tions violates the factorizability condition.

This preponderance of evidence for quantum states based
on robust, strongly resonating dimers implies further that the
�spin and orbital� liquid phase is gapped. Such a state would
have only short-ranged correlation functions. However, these
gapped states are part of a low-energy manifold, and for the
extended system we have shown that this consists quite gen-
erally of large numbers of �nearly� degenerate states. The
availability of arbitrary dimer rearrangements at no energy
cost has been suggested to be sufficient for the deconfine-
ment of elementary S=1 /2 �and by analogy T=1 /2� excita-
tions with fractional statistics.35 However, the spinons �orbi-
tons� are massive in such a model, in contrast to the
properties of algebraic liquid phases.65

A low-spin to high-spin transition, occurring as a function
of �, is present for all values of �. The quantitative estima-
tion of �c in the extended system remains a problem for a
more sophisticated analysis. At the qualitative level, large �
can be considered to suppress quantum spin fluctuations by
promoting parallel-spin �ferromagnetic� intermediate states
on the magnetic ions. However, even when this sector is
quenched, the orbital degrees of freedom remain frustrated
and contain nontrivial problems in orbital dynamics. In the
superexchange �low-�, high-�� region, frustration is resolved
by the formation of orbital-singlet �spin triplet� dimers,
whose resonance minimizes the ground-state energy. The
frustration in the direct-exchange �high-�, high-�� region is
resolved by avoided-blocking orbital configurations, and
order-by-disorder effects are responsible for the selection of
the true ground state from a degenerate manifold of possi-
bilities; this is the only part of the phase diagram not display-
ing dimer physics. Thus the ferromagnetic orbital models in
both limits exhibit a behavior quite different from that of
systems with only S=1 /2 spin degrees of freedom on the
triangular lattice.

We have commented on both geometry and spin-orbital
interactions as the origin of frustration in the models under
consideration. However, a statement such as “on the triangu-
lar lattice, geometrical frustration enhances interaction frus-
tration for spin-orbital models” must be qualified carefully.
We have obtained anecdotal evidence concerning such an
assertion in Sec. VI by considering other lattice geometries,
and find that indeed the same model on an unfrustrated ge-
ometry appears capable of supporting ordered states; how-
ever, the interplay of the two effects is far from direct as the
kagome lattice presents a case where dimer formation acts to
reduce the net frustation. Quite generally, spin-orbital models
contain in principle more channels which can be used for
relieving frustration, but the exact nature of the coupling of
spin and orbital sectors may result in the opposite effect.
Specific data characterizing mutual frustration can be ob-
tained from the spin and orbital correlations computed on
small clusters: as shown in Sec. V, for the triangular lattice
there are indeed regimes where, for example, the effective
orbital interactions enforced by the spin sector make the or-
bital sector more frustrated �higher Tij� than would be the
analogous pure spin problem �measured by Sij�, and con-
versely.

We comment briefly on other approaches which might be
employed to obtain more insight into the states of the ex-
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tended system, with a view to establishing more definitively
the nature and properties of the candidate orbital-liquid
phase. More advanced numerical techniques could be used to
analyze larger unit cells, but while Lanczos diagonalization,
contractor renormalization,66 or other truncation schemes
might afford access to systems two, or even four, times
larger, it seems unlikely that these clusters could provide the
qualitatively different types of data required to resolve the
questions left outstanding in Sec. V. An alternative, but still
nonperturbative and predominantly unbiased, approach
would be the use of variational wave functions, either formu-
lated generally or in the more specific projected wave-
function technique which leads to different types of flux
phase.67,68 Adapting this type of treatment to the coupled
spin and orbital sectors without undue approximation re-
mains a technical challenge.

Within the realm of effective models which could be ob-
tained by simplification of the ground-state manifold, we cite
only the possibility motivated by the current results of con-
structing dimer models based on �ss/ot� and �os/st� dimers.
Dimer models26 are in general highly simplified, and there is
no systematic procedure for their derivation from a realistic
Hamiltonian, but they are thought to capture the essential
physics of certain classes of dimerized systems. Because
QDM Hamiltonians provide exact solutions and in some
cases genuine examples of exotica long sought in spin sys-
tems, including the RVB phase and deconfined spinon exci-
tations, they represent a valuable intermediate step in under-
standing how such phenomena may emerge in real systems.
Here we have found �i� a very strong tendency to dimer
formation, �ii� a large semiclassical degeneracy of basis
states formed from these dimers, and �iii� that resonance pro-
cesses even at the four-site plaquette scale provide a very
significant energetic contribution. From the final observation
alone, a minimal QDM, meaning only exchange of parallel
dimers of all three directions and on all possible plaquette
units, would already be expected to contain the most signifi-
cant corrections to the VB energy. At this point we empha-
size that, because of the change of SU�2� orbital sector with
lattice direction, our 2D models are not close to the SU�4�
point where four-site plaquette formation, and hence very
probably a crystallization, would be expected.13 From the
results of Secs. IV and V, a rather more likely phase of the
QDM would be one with complete plaquette resonance
through all three colors and without breaking of translational
symmetry.

Rigorous proof of a liquid phase, such as that represented
by a RVB state, is more complex, and as noted in Sec. I it
requires satisfying both energetic and topological criteria.

Following the prescription in Ref. 19, three conditions must
be obeyed: �i� a propensity for dimer formation, �ii� a highly
degenerate manifold of basis states from which the RVB
ground state may be constructed, and �iii� a mapping of the
system to a liquid phase of a QDM. Criteria �i� and �ii� match
closely the labels in the previous paragraph, and both dimer
formation and high degeneracy have been demonstrated ex-
tensively here. The energetic part of criterion �iii� also ap-
pears to be obeyed here: static dimers have an energy �V�,
and allowing their location and orientation to change gains
more �t�. The regime V / t	1 of the triangular-lattice QDM is
the RVB phase demonstrated in Ref. 27, whose properties
include short-range correlation functions and gapped decon-
fined spinons. This mapping also contains the criterion of
topological degeneracy and could in principle be partially
circumvented by a direct demonstration. However, no suit-
able numerical studies are available of nonsimply connected
systems, and so here we can present only plausibility argu-
ments based on the high degeneracy and spatial topology of
the dimer systems analyzed in Secs. IV and V. It is safe to
conclude that the threefold-degenerate t2g orbital system on
the triangular lattice is one of best candidates yet for a true
spin-orbital RVB phase.

In closing, spin-orbital models have become a frontier of
intense current interest for both experimental and theoretical
studies of exotic magnetic and electronic states emerging as
a consequence of intrinsic frustration. Our model has close
parallels to, and yet crucial differences from, similar studies
of manganites �cubic systems of eg orbitals�, LiNiO2 �trian-
gular, eg�, YTiO3 and CaVO3 �cubic, t2g�, and many other
transition-metal oxides, appearing in some respects to be the
most frustrated yet discussed. One of its key properties, aris-
ing from the extreme �geometrical and interaction-driven�
frustration, is that ordered states become entirely uncompeti-
tive compared to the resonance energy gained by maximizing
quantum �spin and orbital� fluctuations. In the orbital sector,
the restoration of symmetry by orbital fluctuations makes the
model a strong candidate to display an orbital-liquid phase.
Because this liquid is based on robust dimer states, the
mechanism for its formation is very likely to be spin-orbital
RVB physics.
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